
Accela Automation®

Version 7.3 FP3

SCRIPTING GUIDE

Accela Automation Scripting Guide

© 2014 Accela, Inc. All rights reserved.

Accela, the Accela logo, the Accela logo with “Government Software” notation, Accela Automation, Accela
Asset Management, Accela Citizen Access, Accela Mobile Citizen Access, Accela ERS, Accela GIS, Accela
IVR, Accela Land Management, Accela Licensing, Accela Mobile Office, Accela Public Health and Safety,
Accela Service Request, Accela Wireless, Kiva DMS, Kiva Development Management System, 'PERMITS'
Plus, SiteSynch, Tidemark Advantage, VelocityHall, Vantage360, and other Accela logos, devices, product
names, and service names are trademarks or service marks of Accela, Inc. Brava! Viewer is a trademark of
Informative Graphics Corporation. Windows is a registered trademark of Microsoft Corporation. Acrobat is a
trademark of Adobe Systems Incorporated. Portions copyright 2009 Ching-Lan 'digdog' Huang and digdog
software. All other company names, product names, and designs mentioned herein are held by their
respective owners.

Version 7.3 FP3
September 2014

Corporate Headquarters

2633 Camino Ramon
Suite 500
Bishop Ranch 3
San Ramon, CA 94583

Tel: (888) 722-2352
Fax: (925) 659-3201

www.accela.com

http://www.accela.com

3

TABLE OF CONTENTS
Preface ...12
Revision History .. 12

Target Audience.. 12

Obtaining Technical Assistance.. 12

Disclaimer ... 13
Reusing Code Samples.. 13

Available Resources ... 14
Accela Community.. 14
Product Documentation .. 14

Documentation Feedback ... 15

Chapter 1
Introduction ...16

Understanding Events... 17
Example Use Cases ... 19

Understanding Master Scripts... 23
Triggering Scripts ... 23

Understanding Standard Choice Script Controls .. 26

Understanding Expression Builder Scripting... 27

Chapter 2
Event and Script Setup...30

Listing of Events and Master Scripts... 30

Working with Events ... 44
Searching for an Active Event .. 44
Viewing the Full List of Accela Automation Events..................................... 46
Enabling an Event .. 48
Disabling an Event.. 49

Triggering Events.. 50
Triggering Meeting Agenda Events .. 50
Triggering Meeting Schedule Events.. 51

Working with Scripts ... 52
Adding a Script ... 52
Searching for a Script ... 53
Editing a Script ... 54
Deleting a Script ... 54

Accela Automation Scripting Guide
Table of Contents 4
Associating Events with Scripts .. 55

Chapter 3
Master Scripts ...56

Viewing Master Scripts ... 58

Understanding the EMSE Execution Path .. 58

Creating a New Script ... 60

Configuring the Universal Script ... 60

Configuring Global Variables .. 62

Adding Custom Functions... 63

Chapter 4
Script Controls ..65

Understanding Script Controls .. 65

Understanding Script Control Syntax.. 66
Understanding Case Sensitivity.. 66
Understanding Variable and Function Names.. 67
Understanding Curly Brackets .. 67
Understanding Argument Types... 67

Understanding Criteria (the If Clause) .. 67
Understanding Criteria with Multiple Conditional Statements..................... 69

Understanding Actions (the Then Clause) .. 70

Specifying Script Controls as Standard Choices .. 71

Understanding Script Control Branching... 73
Using Branching to Implement a For Loop ... 75
Using Pop-Up Messages.. 75
Using Data Validation ... 77
Using Variable Branching ... 78
Branching to the Same Standard Choice from Different Events................. 81

Naming Inspection Result Events ... 81

Exploring an Object... 82

Chapter 5
Accela Citizen Access Page Flow Scripts ..84

Understanding Accela Citizen Access Page Flow Scripts 84

Using Model Objects... 85

Creating a Page Flow Master Script ... 85

Chapter 6
Script Testing ..87

Understanding the Script Test Tool .. 87

Testing an Event and Script Association .. 90
Associating the script to an event ... 90
Testing the event .. 91

Running a Script Test ... 91
Using ScriptTester .. 92

Troubleshooting .. 93

Accela Automation Scripting Guide
Table of Contents 5
Launching the EMSE Debug Tool .. 93
Understanding the Script Output Window .. 95
Setting the showDebug Script Control.. 97
Using the aa.print Function... 98
Using Biz Server Logs .. 98

Chapter 7
Accela Automation
Object Model..100

Discussing the Accela Automation Object Model ... 100

Understanding Script Return Values... 112
ScriptReturnCode ... 112
ScriptReturnMessage ... 113
ScriptReturnRedirection ... 113

Appendix A
Master Script
Function List..114

activateTask.. 115

addAddressCondition.. 115

addAddressStdCondition .. 116

addAllFees .. 116

addAppCondition .. 117

addASITable ... 117

addASITable4ACAPageFlow.. 118

addContactStdCondition ... 118

addCustomFee ... 119

addFee.. 120

addFeeWithExtraData... 120

addLicenseCondition .. 121

addLicenseStdCondition ... 122

addLookup .. 122

addParcelAndOwnerFromRefAddress.. 123

addParcelCondition... 123

addParcelDistrict... 124

addParent ... 124

addrAddCondition ... 124

addReferenceContactByName ... 125

addressExistsOnCap .. 125

addStdCondition ... 126

addTask .. 126

addTimeAccountingRecord... 127

addTimeAccountingRecordToWorkflow.. 127

addToASITable ... 128

allTasksComplete ... 129

appHasCondition .. 129

Accela Automation Scripting Guide
Table of Contents 6
applyPayments ... 130

appMatch .. 130

appNameIsUnique .. 131

assignCap ... 131

assignInspection ... 132

assignTask.. 132

autoAssignInspection.. 133

branch ... 133

branchTask ... 133

capHasExpiredLicProf .. 134

capIdsFilterByFileDate.. 135

capIdsGetByAddr.. 135

capIdsGetByParcel ... 136

capSet... 137

checkCapForLicensedProfessionalType .. 137

checkInspectionResult .. 138

childGetByCapType .. 138

closeCap ... 139

closeSubWorkflow .. 139

closeTask.. 140

comment ... 140

comparePeopleGeneric .. 141

completeCAP .. 142

contactAddFromUser .. 142

contactSetPrimary... 142

contactSetRelation.. 143

convertDate... 143

convertStringToPhone .. 143

copyAddresses ... 143

copyAppSpecific ... 144

copyASIFields ... 144

copyASITables.. 145

copyCalcVal .. 145

copyConditions ... 145

copyConditionsFromParcel... 146

copyContacts .. 146

copyContactsByType .. 147

copyFees .. 147

copyLicensedProf ... 147

copyOwner.. 148

copyOwnersByParcel.. 148

copyParcelGisObjects... 148

copyParcels .. 148

copySchedInspections .. 149

Accela Automation Scripting Guide
Table of Contents 7
countActiveTasks.. 149

countIdenticalInspections.. 150

createAddresses ... 150

createCap ... 150

createCapComment.. 151

createChild.. 151

createParent ... 152

createPendingInspection .. 152

createPendingInspFromReqd ... 153

createPublicUserFromContact.. 153

createRefContactsFromCapContactsAndLink .. 154

createRefLicProf ... 155

createRefLicProfFromLicProf.. 156

dateAdd... 156

dateAddMonths... 157

dateFormatted... 157

dateNextOccur .. 157

deactivateTask.. 158

deleteTask .. 158

editAppName .. 159

editAppSpecific ... 159

editBuildingCount.. 160

editCapContactAttribute.. 160

editChannelReported .. 160

editContactType.. 161

editHouseCount .. 161

editInspectionRequiredFlag .. 162

editLookup .. 162

editPriority ... 162

editRefLicProfAttribute .. 163

editReportedChannel .. 163

editScheduledDate.. 164

editTaskComment... 164

editTaskDueDate .. 164

editTaskSpecific.. 165

email ... 165

emailContact ... 166

endBranch... 166

executeASITable... 167

exists... 167

externalLP_CA.. 167

feeAmount... 168

feeAmountExcept.. 169

feeBalance .. 169

Accela Automation Scripting Guide
Table of Contents 8
feeCopyByDateRange .. 169

feeExists ... 170

feeGetTotByDateRange.. 171

feeQty ... 171

getAddressConditions... 171

getAppIdByASI.. 172

getAppIdByName.. 172

getApplication ... 173

getAppSpecific .. 173

getCapByAddress ... 174

getCAPConditions... 174

getCapId ... 175

getCapsWithConditionsRelatedByRefContact.. 175

getChildren.. 175

getChildTasks ... 176

getConditions .. 176

getContactArray .. 177

getContactConditions.. 178

getCSLBInfo.. 178

getDepartmentName... 179

getGISBufferInfo ... 180

getGISInfo... 180

getGISInfoArray .. 181

getGuideSheetObjects.. 181

getInspector .. 182

getLastInspector ... 182

getLastScheduledInspector .. 183

getLicenseConditions.. 183

getLicenseProfessional... 183

getParcelConditions.. 184

getParent .. 184

getParents... 184

getRefLicenseProf .. 185

getRelatedCapsByAddress... 185

getRelatedCapsByParcel.. 186

getReportedChannel... 186

getScheduledInspId .. 187

getShortNotes ... 187

getTaskDueDate ... 187

getTaskStatusForEmail... 188

hasPrimaryAddressInCap ... 188

insertSubProcess.. 188

inspCancelAll .. 189

invoiceFee... 189

Accela Automation Scripting Guide
Table of Contents 9
isScheduled .. 190

isTaskActive.. 190

isTaskComplete .. 191

isTaskStatus ... 191

jsDateToASIDate .. 192

jsDateToMMDDYYYY... 192

licEditExpInfo .. 192

loadAddressAttributes... 193

loadAppSpecific[4ACA]... 193

loadASITable .. 194

loadASITables[4ACA][Before]... 195

loadFees ... 195

loadGuideSheetItems ... 196

loadParcelAttributes.. 197

loadTasks.. 198

loadTaskSpecific... 198

logDebug... 198

lookup ... 199

lookupDateRange ... 199

lookupFeesByValuation .. 201

lookupFeesByValuationSlidingScale .. 202

loopTask ... 203

matches .. 204

nextWorkDay .. 204

openUrlInNewWindow .. 204

parcelConditionExists ... 205

parcelExistsOnCap ... 205

paymentByTrustAccount... 205

paymentGetNotAppliedTot.. 206

proximity.. 206

proximityToAttribute .. 207

refLicProfGetAttribute ... 208

refLicProfGetDate ... 208

removeAllFees .. 209

removeASITable ... 209

removeCapCondition .. 209

removeFee.. 210

removeParcelCondition... 210

removeTask .. 210

replaceMessageTokens.. 211

resultInspection... 211

scheduleInspectDate .. 212

scheduleInspection ... 212

searchProject .. 213

Accela Automation Scripting Guide
Table of Contents 10
setIVR ... 213

setTask ... 214

stripNN .. 214

taskCloseAllExcept ... 215

taskStatus ... 215

taskStatusDate.. 216

transferFunds.. 216

updateAddresses .. 217

updateAppStatus .. 217

updateFee... 217

updateRefParcelToCap .. 218

updateShortNotes ... 219

updateTask ... 219

updateTaskAssignedDate... 220

updateTaskDepartment .. 220

updateWorkDesc .. 221

validateGisObjects .. 221

workDescGet .. 222

zeroPad... 222

Appendix B
Master Script
Object List..223

Fee.. 223

genericTemplateObject... 223

guideSheetObject ... 225

licenseProfObject.. 226

licenseObject .. 234

Task .. 236

Appendix C
Example Expression Script..238

Appendix D
JavaScript Primer..244

Understanding Scripts... 244
Our First Example... 244
Writing And Testing Our First Script ... 246
Using Jext To Make Writing Scripts Easier... 247

Using Variables... 248
Numbers ... 250
Strings .. 251
True and False ... 252
Arrays ... 252
The Special Value “null” ... 253
Objects ... 254

Accela Automation Scripting Guide
Table of Contents 11
Using Expressions .. 254
Mathematical Expressions.. 255
String Expressions.. 256
Boolean Expressions.. 257
Relational Operators... 258
Special Operators... 260
Operator Precedence ... 260

Controlling What Happens Next.. 260
if … else.. 261
for ... 262
while ... 263
do … while.. 263

Using Functions .. 264

Using Objects, Properties, and Methods .. 265
The Array Object .. 265
The Math Object ... 266
The String Object.. 266

Appendix E
Release Notes and Migration ...267

Execution FrameWork Changes ... 267

Script Control Sequencing Changes... 267

Upgrading from 1.x to 2.x.. 268
Configuring the Global Variables.. 268
Migrating Custom Functions... 269
Installing Master Scripts ... 270
Updating Script Control Sequences ... 270
Reinstating 1.x Script Control Sequencing ... 271

Resolved Issues and Edits to Existing Scripts .. 271

New Master Scripts... 273

New Functions .. 273

12
PREFACE
This document provides a consolidated source of information related to the Accela Automation
master script framework.

Revision History
Table 1: Revision History provides a revision history of this document. This revision history
summarizes changes made during each release of this document for the stated version of
Accela Automation.

Target Audience
This guide assumes the reader has a basic understanding of Accela Automation, a general
understanding of programming concepts, and an understanding of the JavaScript programming
language.

Generally, Accela Professional Services develops the necessary scripts as part of the system
configuration and implementation effort. However, in some cases it may be necessary for an
agency administrator to write some scripts. This individual should receive training from the
agency’s Accela Project Manager or Accela Implementation Specialist before attempting any
script writing. Improperly written scripts can seriously damage your system by incorrectly
altering or deleting data for many records.

Obtaining Technical Assistance
As a starting point for all technical assistance, go to the Accela Customer Resource Center
(CRC) website at www.accela.com/services/support-login. At this site you can search the
knowledge base to find answers to commonly asked questions about our products and register
at the Accela Forum to join in an information exchange with other Accela users.

If you still have questions after visiting Accela’s CRC site, or if you encounter any problems as
you use the product, contact your system administrator. If you determine that you need
professional technical assistance, have your agency’s designated contact call the CRC at (888)
7-ACCELA, ext. 5 or (888) 722-2352 ext. 5. The Accela CRC is available Monday through
Friday from 4:00 AM to 6:00 PM Pacific Daylight/Standard Time.

 Table 1: Revision History

Date Description

September 2014 Initial document release

http://www.accela.com/services/support-login

Accela Automation Scripting Guide
Preface 13
Before you call please have this information available for the CRC representative:

 The Accela product name and version number

 Steps to reproduce the issue, including any error message or error number

 Screenshots, if possible

 Whether the problem is specific to a machine or to a user

 Exactly when the problem began

 Anything that changed on your computer or network (for example, did you install any new
software?)

 A copy of your configuration file, if appropriate

Disclaimer
Your environment might look and function differently than the environment described in this
guide. The feature set, portlet names, toolbar options, and the display settings described in this
guide reflect default settings delivered with most new installations. The settings on your system
can be different from these defaults depending on the implementation package for your agency,
your user permissions, and the way that your system administrator sets up your system. Your
system administrator can customize forms, drop-down lists, and also field labels throughout
Accela Automation. Further, if your agency has installed any Accela add-on products, you might
work with features or entire screens not explained in this guide. For information and instructions
on how to use these additional features, see the documentation that came with the Accela add-
on product.

Reusing Code Samples
This document provides numerous code examples. Accela Automation does not guarantee that
these code examples will work in your environment nor does Accela guarantee that these
examples will produce the results you expect. Always make sure you fully test your scripts in a
development environment before using them to alter production data.

Cutting and pasting code examples from this PDF document may introduce extraneous
proprietary formatting elements into your script source and cause your script to produce
unexpected results. Retype examples to ensure that you do not introduce any of these
proprietary formatting elements into your script.

Caution: Only experienced programmers or agency administrators should
use the scripting feature. Improperly written scripts can adversely
affect your system by incorrectly altering or deleting data. Make
sure you write custom scripts carefully and test them before you
implement them. You should receive some training, preferably
from your Accela Project Manager or Implementation Specialist,
before attempting to write scripts.

Accela Automation Scripting Guide
Preface 14
Available Resources

Accela Community
Accela hosts numerous discussions and forums on Accela Community that related to scripting.
The following comprise a couple links:

 Master Script Distributions and Documentation (http://community.accela.com/
accela_automation/m/aascripts/default.aspx)

 Accela Community Scripting Forum (http://community.accela.com/accela_automation/f/
36.aspx)

 Accela Automation Knowledge Base (http://community.accela.com/accela_automation/w/
wiki/script-resources.aspx)

 Community Script Library (http://community.accela.com/accela_automation/m/aascripts/
default.aspx)

 Javadocs (http://community.accela.com/p/doc_interfaces.aspx)

Product Documentation
Accela Automation Release Notes. This guide provides new features, related to the current
release, for Accela Automation and add-on products. It also provides other types of release
notes information such as known and fixed bugs, supported environments, and documentation
corrections and clarifications.

The Accela Automation Release Notes also provides a listing of add-on products that work with
Accela Automation and the documentation sets associated with those products.

Accela Automation Installation Guide. This guide provides instructions for installing Accela
Automation, for upgrading Accela Automation from an earlier version, and for performing post
installation configuration tasks such as setting up browsers, printers for a point of sale
cashiering system, and so forth.

Accela Automation Administrator Guide. This guide instructs agency system administrators on
how to set up and manage all the basic features of the Accela Automation application.

Accela Automation User Guide. This document provides instructions for using Accela
Automation to perform daily tasks in Accela Automation. Daily tasks may include: managing
applications, maintaining models, tracking fees and inspections, managing property and
projects, running reports, managing business licensing, or managing code enforcement.

Accela Automation Configuration Reference. The document provides detailed reference data
for Standard Choices and Function Identifications (FIDs).

Accela Automation On-premise Administrator Supplement. This guide provides supplemental
administrative tasks for agencies hosting their own deployments. If you use an Accela-hosted
environment, you do not need to use this guide.

Accela Automation Migration Guide. This guide provides instructions for migrating an Accela
Automation deployment from one environment to another. It provides instructions for performing
a complete and incremental migrations.

Accela Automation Scripting Guide
Preface 15
Accela Automation Concepts Guide. This guide provides a high level overview of the main
Accela Automation concepts.

Documentation Feedback
Accela’s technical publications team wants to provide you with the most accurate and useful
documentation possible. We welcome your feedback in helping us improve future versions of
this guide. If you have feedback and want to assist in improving the documentation, please
send an email message to documentation@accela.com. Please include the product name and
the version number, the title of the printed manual or online help, the specific topic (copy/paste
the section you are referring to), and a detailed description of your suggestion.

16
CHAPTER 1:

INTRODUCTION
Accela Automation provides a set of master script files that you configure to perform activities
before or after an Accela Automation or Accela Citizen Access event (such as submitting an
invoice). Accela Automation provides a separate master script file for each scriptable before
and after event. Each master script file contains a global set of Accela Automation functions,
that you configure through a Standard Choice script control, that ties the function to a specific
before event or after event. Accela Automation controls the master script functions included
within the master script files, and you should not change these functions.

Accela Automation also provides the Expression Builder interface to script form based
interactions (auto-populating data fields based on user-selected values, for example) that occur
before you trigger an event and master script activity.

The Event Manager Scripting Engine (EMSE) comprises the Accela Automation scripting
platform. Accela Automation stores the master script files, written in JavaScript, in the Accela
Automation database. Accela Automation uses the Rhino open source JavaScript engine to
convert scripts into Java classes that Accela Automation executes through the EMSE API.

Figure 1: Accela Automation Scripting

Accela Automation launches scripts when the events that you associate with the script occur.
You can use these event-triggered scripts to:

 Automate business processes

 Help save mouse-clicks

 Assess fees

 Update workflow

Accela Automation Scripting Guide
1: Introduction 17
 Enforce business rules

 Custom data validation

 Confirm event pre-requisites

 Communicate

 Send event driven email

 Support Event / Batch driven data collection

 Communicate/access web services, email, and interact with the file system

Figure 2: Master Script Flow of Execution shows the flow when you trigger an event with an
associated master script.

Figure 2: Master Script Flow of Execution

Topics:

 Understanding Events

 Understanding Master Scripts

 Understanding Standard Choice Script Controls

 Understanding Expression Builder Scripting

Understanding Events
An action that a user performs through the Accela Automation user interface, clicking the
Submit button to create a new record for example, constitutes an event (Figure 3: Launching
an Accela Automation Event). These events initiate some sort of reaction that may affect other
parts of your system. For example, when you create a new record and save it, Accela
Automation updates information on your system, as required.

Accela Automation Scripting Guide
1: Introduction 18
Figure 3: Launching an Accela Automation Event

Other possible events include finding a record, assessing a fee, scheduling an inspection, and
so forth. Accela Automation provides more than 200 events with which you can associate
scripts. You cannot create new events, but you can choose the events to set up for your agency
and disable the events that you do not use.

Figure 4: Scriptable Event and Event Variables

Each of the events includes a predefined set of variables that contain values about the event
trigger. The associated master script can access these values.

You can trigger events from Accela Automation clients, such as Accela Mobile Office, Accela
IVR, and Accela Citizen Access, or from integrated third-party products.

Accela Automation provides before and after event types (Figure 5: Triggered event process
flow).

Figure 5: Triggered event process flow

Accela Automation Scripting Guide
1: Introduction 19
A before event occurs before you save any data to the database. Scripts associated with before
event types typically validate data to ensure the process saves clean and accurate data to the
database. Accela Automation provides the word “before” in the suffix of before event names.

An after event occurs directly after Accela Automation saves submitted data to the database.
Scripts associated with an after event implement automation of an action for the user. Accela
Automation provides the word “after” in the suffix of after event names.

Example Use Cases

Scheduling
The following provides some example use cases that relate to scheduling. You can:

 Automatically update the task status in an inspection workflow when you schedule an
inspection.

 Schedule an investigation inspection for the next business day after filing of a complaint.

 Check to ensure that all required inspections have passed, before scheduling a final
inspection.

Assessing Fees
The following provides some example use cases for assessing fees. You can:

 Assess and invoice standard fees or assess and invoice application dependent fees.

 Check to ensure that the balance due for a record (permit or license, for example) is less
than or equal to zero before issuance

Processing Documents
The following provides some example use cases that relate to document processing. You can:

 Email a PDF copy of a license, to the license holder, upon issuance or renewal.

 Check to ensure submission of all required documents, before processing an application.

Initiating and Configuring Communications
The following provides some example use cases that relate to initiating communications and
configuring communications. You can:

 Initiate any kind of communication with events and scripts.

 Configure the title/subject and content of communication, by the event or action that
initiates the communication.

 Configure each communication with a different title/subject and with different content
according to the event or action that initiate the communication.

 Configure communications to have a different title/subject and content according to the
recipients.

 Configure communications to have a different title/subject and content according to the type
of communication (i.e. email, text message, or AA/ACA announcement).

Accela Automation Scripting Guide
1: Introduction 20
 Configure communications to have a different title/subject and content according to a
custom set of agency-defined criteria. Examples include:

• Record type (4 level hierarchy or alias)

• Standard fields

• Template fields

• ASI

• Property information

Attaching Communications to Records
Accela Automation automatically attaches any outgoing emails to the license or case from
which it originated. Accela Automation tracks the date and user that sent the correspondence
along with the comments.

You can define whether the message subject, message body, bcc field, cc field, etc. dictates
which emails Accela Automation retrieves, stores in the database, and attaches to
corresponding records.

Configuring Communication Recipients
You can configure who receives communications, based on any of the following:

 Configuring communication recipients based on initiating event

You can configure communications to have different recipients according to the event or
action that initiates the communication.

 Configuring recipients based on type of communication

You can configure communications to have different recipients according to the type of
communication (i.e. email, text message, or AA/ACA announcement).

 Configuring communication recipients based on Accela Automation user profiles

You configure scripts to send communications to one or more recipients based on their user
profile in Accela Automation, including:

• Agency

• Organization (agency > bureau > division > section > group > office (department alias)

• User Group

• Individual users

• Users with inspector status enabled (vs. disabled)

 Configuring communication recipients based on APO owners

You can configure scripts to send communications to one or more recipients based on
being in the reference APO database as an owner.

 Configuring communication recipients based on APO owners on a record

You can configure scripts to send communications to one or more recipients based on
being a property owner on a record (including a Work Order).

 Configuring communication recipients based on reference contacts

Accela Automation Scripting Guide
1: Introduction 21
You can configure scripts to send communications to one or more recipients based on their
contact type as a reference contact.

 Configuring communication recipients based on transaction contacts

You can configure scripts to send communications to one or more recipients based on their
contact type as a contact on a record (including a Work Order).

Accela Automation prompts the user to email recipient(s) from a list of contacts associated
with the license or case record.

 Configuring communication recipients based on reference licensed professionals

You can configure scripts to send communications to one or more recipients based on their
professional license:

• All licensed professionals

• Licensed professionals of one or more licensed professional types

 Configuring communication recipients based on licensed professionals associated with a
record

You can configure scripts to send communications to one or more recipients based on
being a licensed professional on a record (including a Work Order).

 Configuring communication recipients based on Accela Citizen Access public user
permissions

You can configure scripts to send communications to one or more recipients based on their
Accela Citizen Access public user permissions:

• All public users

• Anonymous public users

• Registered public users

• Record creator

• Contact

• Owner

• Licensed Professional (any or specific)

 Configuring communication recipients based on their association with an inspection

You can configure scripts to send communications to one or more recipients based on their
association with an inspection:

• Requestor

• Contact

• Inspector

 Configuring recipients based on their association with a workflow task

You can configure scripts to send communications to one or more recipients based on their
association to a workflow task:

• Action By Department

• Action By User

Accela Automation Scripting Guide
1: Introduction 22
• Assigned to Department

• Assigned to User

 Configuring recipients based on their association with a condition assessment

You can configure scripts to send communications to one or more recipients based on their
association with a condition assessment:

• Department

• Inspector

 Configuring recipients based on their assignment to an activity

You can configure communications to be send to one or more recipients assigned to an
activity.

 Configuring recipients of the communication by agency-defined criteria (i.e. set)

You can configure scripts to send communications to a set of recipients according to
agency-defined criteria.

Examples of criteria that you can use to create a set include:

• All contacts on records of a designated record type (4 level hierarchy or alias)

• All licensed professionals associated with records that contain designated values in
standard fields, template fields or ASI fields

• All owners of property according to some selection criteria such as range of addresses
or proximity to a location

• Any other set of recipients as defined by the agency

Preventing Duplicate Communications
When you properly configure the communication event script, for each type of communication
with the same subject and same content, a single person can receive only one of each type of
communication, even if they are members of more than one group of recipients.

For example: A person may be part of an agency organization (agency > bureau > division >
section > group > office) and also part of an agency group (building clerk).

 If you configure an email to announce scheduled maintenance to members of this
organization and also this group, the person only receives one email.

 If you configure an email and a text message for members of this organization and also this
group, the person receives one email and one text message.

Configuring Email and Text Message Sent-from Values
You can configure emails and text messages to have different “from” values, according to the
initiating event/action, type of communication, or other agency-defined criteria.

Accela Automation Scripting Guide
1: Introduction 23
Understanding Master Scripts
Accela Automation uses scripts to perform the custom activities that extend standard event
processing. When run, a script produces an effect on the objects defined in your system, such
as records, parcels, addresses, and so forth.

Accela Automation provides a set of master script files that extend functionality for events. For
some events, Accela Automation provides a master script file unique to that event. For the other
events, Accela Automation provides a universal master script that you can use as a template for
development of an event-specific script.

Accela Automation provides the following three global master script files that each event-
specific master script includes during runtime.

 INCLUDES_ACCELA_FUNCTIONS

 INCLUDES_ACCELA_FUNCTIONS_ASB

 INCLUDES_ACCELA_GLOBALS

These global master script files contain the set of functions Accela Automation uses during
execution of each of the event-specific scripts.

Triggering Scripts
You can trigger a script from an event (Understanding Events on page 17), a batch job, a set
script or a script test.

Topics:

 Batch Jobs

 Set Scripts

 Script Test

Batch Jobs
Batch jobs trigger scripts through a scheduled job in contrast to a user-invoked action. For
example, you can schedule a nightly batch job, with an associated script, that looks for expired
permits or licenses and updates them to an expired application and/or expiration status. At a
high level batch scripts contain instructions to query records based on a specified filter, evaluate
each returned record and take action for each record according to certain criteria. Accela
Automation provides the Batch Job portlet (Figure 6: Batch Jobs Portlet) from where you can
use UI controls to set parameters for the associated batch job script.

Note: Accela Automation does not support changes to or overrides of
master script files, especially the functions that three global
master scripts include.

Accela Automation Scripting Guide
1: Introduction 24
Figure 6: Batch Jobs Portlet

In addition, Accela Automation provides a batch job transaction manager for you to control
transactions by scripts. The batch job transaction manager uses the following three methods to
begin, commit, and roll back transactions separately.

aa.batchJob.beginTransaction(int seconds)

aa.batchJob.commitTransaction()

aa.batchJob.rollbackTransaction()

For more information about transaction manager, see http://docs.oracle.com/javaee/6/api/javax/
transaction/TransactionManager.html.

Note: There are some limitations when using the batch job transaction
manager.

• Every time before invoking commitTransaction() or
rollbackTransaction(), invoke beginTransaction(int seconds)
first.

• The batch job transaction manager does not support event
triggering scripts.

• The batch job transaction manager does not support nested
transactions. For more information about nested transaction,
see http://en.wikipedia.org/wiki/Nested_transaction.

http://docs.oracle.com/javaee/6/api/javax/transaction/TransactionManager.html
http://docs.oracle.com/javaee/6/api/javax/transaction/TransactionManager.html
http://en.wikipedia.org/wiki/Nested_transaction

Accela Automation Scripting Guide
1: Introduction 25
Set Scripts
You can associate a set script to the “Execute Script” button on the Set portlet (Figure 7: Set
Portlet). The script contains instructions to evaluate each member (record) of the selected set
and take action if the member falls into the specified criteria.

Figure 7: Set Portlet

Example Use Case

Manage an invoicing process.

 Run a batch script to evaluate records and determine if you require an invoice. If so, add the
record to a set.

 Review the generated set for accuracy; add or remove records as required.

 Execute the script from the set portlet.

 The script evaluates each record; if it meets specified criteria take the appropriate action
(eg. update the record, send an email or generate invoices reports).

Script Test
Accela Automation provides the Script Test tool for EMSE script writers. This tool enables you
to enter and execute EMSE scripts with no affect on the Accela Automation database. The

Accela Automation Scripting Guide
1: Introduction 26
script writer can evaluate the output of the script to determine further development effort and
testing. You can use the Script Test tool to:

 Develop and test batch scripts.

 Develop and test custom functions.

 Troubleshoot and debug EMSE scripts.

Figure 8: Script Test Tool

Understanding Standard Choice Script Controls
You connect an event to a script through a comparably named Standard Choice script control.
The script control calls functions from the global master script files, included in each script file,
and passes parameters to these functions to control how the script interacts with the event
(Figure 9: Standard Choice Script Control).

Accela Automation Scripting Guide
1: Introduction 27
Figure 9: Standard Choice Script Control

Understanding Expression Builder Scripting

Expression Builder provides an interface to script client side interactions (or expressions) before
triggering an event type, submitting a form for example, handled by the master script
framework. You can use Expression Builder to define expressions that trigger when a form
loads, or when a user selects or enters a value in an individual form field. You can use
expressions to perform calculations, provide drop-down lists, or auto-populate data fields based
on user-selected values.

Example Use Case

A user selects a value from a drop-down list in ASI. You create a script for an expression that
makes the selected value affect other fields in the form to:

 Mark fields as required.

 Mark fields as read-only or hidden as they are no longer required.

 Pre-populate them based on a calculation or lookup table.

 Trigger an alert pop-up window or alert message next to other fields.

Example Use Case

A user enters a permit number or license number in an ASI text field. Accela Automation
provides a message about the validity of the permit or license number before the user submits
the form.

Expressions implement business rules that require users to receive immediate feedback in the
user interface before they submit a form. You can use “before” events in the master script

Note: Accela Automation uses the Event Manager and Scripting
Engine (EMSE) to handle default form and portlet data fields.

Accela Automation Scripting Guide
1: Introduction 28
framework to perform a similar type of form validation. However, with the master script
framework, the user must complete the entire form and submit it before receiving feedback.
With expressions, the user receives feedback immediately upon completing an individual field
on the form.

Expression Builder provides a wizard to create expressions (see Accela Automation
Administrator’s Guide) and Accela Automation generates scripts to implement the expressions
that you create through the wizard. You can view and edit the generated expression scripts in
an Expression Builder window when you toggle Expression Builder from wizard mode to script
mode (Figure 10: Expression Builder Portlet). You can select whether to execute the
expressions for Accela Automation only, Accela Citizen Access only, or both.

Figure 10: Expression Builder Portlet

You can use a combination of field level and form level data validation, depending on your
business needs. You can trigger an master script from an expression. See the discussion
thread on Accela Community for more information about Expression Builder (http://
community.accela.com/search/SearchResults.aspx?q=expression+builder).

You can configure an expression script to populate form data from an external data source,
through an external web services. When connected to an external web service, administrators
can generate expressions that use data elements, from an external web service, as variables or
data items.

http://community.accela.com/search/SearchResults.aspx?q=expression+builder
http://community.accela.com/search/SearchResults.aspx?q=expression+builder

Accela Automation Scripting Guide
1: Introduction 29
Example Use Case

An agency administrator uses Expression Builder to build and execute an expression for the
License Professional portlet. The script interacts with an external web service, such as the State
Licensing Board, to check for the current status of a license and whether the Licensed
Professional selected in a new application is valid.

Appendix C: Example Expression Script on page 238 provides a detailed example of an
expression script.

30
CHAPTER 2:

EVENT AND SCRIPT SETUP
Topics:

 Listing of Events and Master Scripts

 Working with Events

 Working with Scripts

 Associating Events with Scripts

Listing of Events and Master Scripts
Accela Automation provides an event manager interface, consisting of a collection of web
pages, to identify events and their associated script (Figure 11: Events and Associated Scripts).

Figure 11: Events and Associated Scripts

Table 2: Event and Master Script List provides the list of scriptable Accela Automation events
and whether an Out-Of-The-Box (OOTB) master script (Working with Scripts on page 52) is
provided to associate with the event. If a master script is not provided for an event, you can
easily create your own.

In most cases, you can understand the nature of events by the event name and Accela
Automation provides before and after events with the same trigger. For example, Accela
Automation triggers the AAAddressUpdateAfter and the AAAddressUpdateBefore when the
user submits an address update.

Accela Automation Scripting Guide
2: Event and Script Setup 31
 Table 2: Event and Master Script List

Event Name Description Master
Script?

AAAddressUpdateAfter The after event for when a user updates a daily address.

AAAddressUpdateBefore The before event for when a user updates a daily address.

AddContractLicenseAfter The after event for when agency administrators associate a
licensed professional with the public user account for an
external inspector.

AddContractLicenseBefore The before event for when agency administrators associate a
licensed professional with the public user account for an
external inspector.

AAOwnerUpdateAfter The after event for when a user updates a daily owner.

AAOwnerUpdateBefore The before event for when a user updates a daily owner.

ActivityDeleteAfter The after event for when a user deletes an activity.

ActivityDeleteBefore The before event for when a user deletes an activity.

ActivityInsertAfter The after event for when a user inserts an activity.

ActivityInsertBefore The before event for when a user inserts an activity.

ActivityUpdateAfter The after event for when a user updates an activity.

ActivityUpdateBefore The before event for when a user updates an activity.

AddAgendaAfter The after event for when a user adds an agenda.

AddAgendaBefore The before event for when a user adds an agenda.

AdditionalInfoUpdateAfter The after event for when a user updates additional
information.

√

AdditionalInfoUpdateBefore The before event for when a user updates additional
information.

√

AddLicenseToPublicUserAfter4ACA Accela Citizen Access - The after event for when a user adds
a license to a public user.

AddLicenseValidation4ACA Accela Citizen Access - The after event for when a user adds
a license to a user account.

AddressAddAfter The after event for when a user creates an address.

AddressAddBefore The before event for when a user creates an address.

AddressConditionAddAfter The after event for when a user adds a condition to an
address.

AddressLookUpAfter The after event for when a user creates a reference address
after looking up an address from reference.

AddressLookUpBefore The before event for when a user creates a reference
address after looking up an address from reference.

AddressRemoveAfter The after event for when a user removes an address from the
daily side.

AddressRemoveBefore The before event for when a user removes an address from
the daily side.

Accela Automation Scripting Guide
2: Event and Script Setup 32
AddressSelectOnSpearFormAfter The after event for when a user attaches selected addresses
on the ref addresses look up result list portlet.

AddressSelectOnSpearFormBefore The before event for when a user attaches selected
addresses on the ref addresses look up result list portlet.

AddressSetDetailUserExecuteAfter The after event for when a user executes an address set
script.

AddressUpdateAfter The after event for when a user updates an address.

AddressUpdateBefore The before event for when a user updates an address.

AppHierarchyAddAfter

AppHierarchyAddBefore

AppHierarchyDeleteAfter

AppHierarchyDeleteBefore

ApplicationConditionAddAfter The after event for when a user adds an application condition
task

√

ApplicationConditionAddBefore The before event for when a user adds an application
condition task.

ApplicationConditionBatchUpdateAfter The after event for when a user updates conditions of
approvals.

ApplicationConditionDeleteAfter The after event for when a user deletes an application
condition task.

ApplicationConditionDeleteBefore The before event for when a user deletes an application
condition task.

√

ApplicationConditionOfApprovalUpdate
After

The after event for when a user updates a condition of
approval.

ApplicationConditionOfApprovalUpdate
Before

The before event for when a user updates a condition of
approval.

ApplicationConditionUpdateAfter The after event for when a user updates an application
condition task.

√

ApplicationConditionUpdateBefore The before event for when a user updates an application
condition task.

√

ApplicationDeleteAfter The after event for when a user deletes a record.

ApplicationDeleteBefore The before event for when a user deletes a record.

ApplicationDetailNewAfter The after event for when a user creates an application detail.

ApplicationDetailNewBefore The before event for when a user creates an application
detail.

ApplicationDetailUpdateAfter The after event for when a user updates an application detail.

ApplicationDetailUpdateBefore The before event for when a user updates an application
detail.

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 33
ApplicationGISGovXMLSubmitAfter The after event for when a user creates an application
through Accela GIS GovXML.

ApplicationSelectAfter The after event for when a user selects an application.

ApplicationSelectBefore The before event for when a user selects an application.

ApplicationSpecificInfoUpdateAfter The after event for when a user updates application specific
information.

√

ApplicationSpecificInfoUpdateBefore The before event for when a user updates application specific
information.

√

ApplicationStatusUpdateAfter The after event, that adds a history record, when a user
updates application status.

√

ApplicationStatusUpdateBefore The before event for when a user updates application status. √

ApplicationSubmitAfter The after event for when a user creates a record according to
the following scenarios:

• The createCap web service operation

• The initiateCAP GovXML operation

• The user interface of Accela Automation, Accela Citizen
Access, Accela Mobile Office, Accela Wireless, and
Accela IVR

√

ApplicationSubmitBefore The before event for when a user creates a record in the
following scenarios:

• The createCap web service operation

• The initiateCAP GovXML operation

• The user interface of Accela Automation, Accela Citizen
Access, Accela Mobile Office, Accela Wireless, and
Accela IVR

√

ApproveContactAssociationforPublicAft
er

The after event for when a user approves a contact
association for a public user.

AssetSubmitAfter The after event for when a user creates an asset.

AssetSubmitBefore The before event for when a user updates an asset.

AssetUpdateAfter The after event for when a user updates an asset.

AssetUpdateBefore The before event for when a user updates an asset.

AssociateAssetToWorkOrderAfter The after event for when a user associates an asset to a work
order.

AssociateAssetToWorkOrderBefore The before event for when a user associates an asset to a
work order.

AuditSetDetailUserExecuteAfter The after event for when a user executes a script on a
random audit set.

AutoPayAfter The after event for when a user submits an auto payment.

AutoPayBefore The before event for when a user submits an auto payment.

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 34
BatchResultInspectionByCSVAfter The after event for when external inspectors upload CSV files
that contain inspection results or when agency users update a
batch of inspection results according to the inspection result
CSV file that a contract inspector or a self-certified inspector
submits.
This event triggers in both Accela Automation and Accela
Citizen Access.

BatchResultInspectionByCSVBefore The before event for when external inspectors upload CSV
files that contain inspection results or when agency users
update a batch of inspection results according to the
inspection result CSV file that a contract inspector or a self-
certified inspector submits.
This event triggers in both Accela Automation and Accela
Citizen Access.

CAEConditionAddAfter The after event for when a user adds a condition to a CAE.

CapSetDetailUserExecuteAfter Occurs after the record set script executes.

CommunicationReceivingEmailBefore The before event for when Accela Automation receives an
email from the email server.

CommunicationReceivingEmailAfter The after event for when Accela Automation receives an
email from the email server.

CommunicationSendingEmailBefore The before event for when Accela Automation sends an
email.

CommunicationSendingEmailAfter The after event for when Accela Automation sends an email.

ConditionAssessmentSubmitAfter The after event for when a user creates a condition
assessment.

ConditionAssessmentSubmitBefore The before event for when a user creates a condition
assessment.

ConditionAssessmentUpdateAfter The after event for when a user updates a condition
assessment.

ConditionAssessmentUpdateBefore The before event for when a user updates a condition
assessment.

ContactAddAfter The after event for when a user adds a contact. √

ContactAddBefore The before event for when a user adds a contact. √

ContactAddressDeactivateAfter The after event for when a user deactivates a contact
address.

ContactAddressDeactivateBefore The before event for when a user deactivates a contact
address.

ContactAddressEditAfter The after event for when a user edits a contact address.

ContactAddressEditBefore The before event for when a user edits a contact address.

ContactAddressLookUpAfter The after event for when a user looks up a contact address.

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 35
ContactAddressLookUpBefore The before event for when a user looks up a contact address.

ContactAddressNewAfter The after event for when a user adds a contact address.

ContactAddressNewBefore The before event for when a user adds a contact address.

ContactEditAfter The after event for when a user edits a contact. √

ContactEditBefore The before event for when a user edits a contact. √

ContactLookUpAfter The after event for when a user adds a reference contact to a
record.

ContactLookUpBefore The before event for when a user adds a reference contact to
a record.

ContactRelatedToPublicUserAfter Executes after users associate a reference contact with the
public user account in Accela Automation or Accela Citizen
Access.

ContactRelatedToPublicUserBefore Executes before users associate a reference contact with the
public user account in Accela Automation or Accela Citizen
Access.

ContactRemoveAfter The after event for when a user removes a contact. √

ContactRemoveBefore The before event for when a user removes a contact. √

ContactUpdateAfter The before event for when a user updates a contact.

ContactUpdateBefore The before event for when a user updates a contact.

ContinuingEducationUpdateAfter The after event for when a user commits continuing
education.

ConvertToRealCAPAfter Accela Citizen Access - The after event for converting a
partial record ID to a real record ID.

√

ConvertToRealCAPBefore Accela Citizen Access - The before event for converting a
partial record ID to a real record ID.

DailyActivityDeleteAfter The after event for when a user deletes a daily activity.

DailyActivityDeleteBefore The before event for when a user deletes a daily activity.

DailyActivityNewAfter The after event for when a user creates a new daily activity.

DailyActivityNewBefore The before event for when a user creates a new daily activity.

DailyActivityUpdateAfter The after event for when a user updates a daily activity.

DailyActivityUpdateBefore The before event for when a user updates a daily activity.

DeleteContractLicenseAfter The after event for when agency administrators disassociate
a licensed professional with the public user account for an
external inspector.

DeleteContractLicenseBefore The before event for when agency administrators
disassociate a licensed professional with the public user
account for an external inspector.

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 36
DocumentDeleteAfter The after event for when a user deletes one or more
documents.

DocumentDeleteBefore The before event for when a user deletes one or more
documents.

DocumentReviewAddAfter The after event for when a user assigns one or more
document reviewers.

DocumentReviewAddBefore The before event for when a user assigns one or more
document reviewers.

DocumentReviewDeleteAfter The after event for when a user deletes one or more
document reviewers.

DocumentReviewDeleteBefore The before event for when a user deletes one or more
document reviewers.

DocumentReviewUpdateAfter The after event for when a user updates a document
reviewer.

DocumentReviewUpdateBefore The before event for when a user updates a document
reviewer.

DocumentUpdateAfter The after event for when a user updates document
information.

√

DocumentUpdateBefore The before event for when a user updates document
information.

√

DocumentUploadAfter Accela Citizen Access - The after event for when a user
uploads a document or when an external inspector uploads a
CSV file containing inspection results.

DocumentUploadBefore Accela Citizen Access - The before event for when a user
uploads a document.

EducationUpdateAfter The after event for when a user updates education.

EstablishmentAddAfter The after event for when a user adds an establishment.

EstablishmentAddBefore The before event for when a user adds an establishment.

EstablishmentUpdateAfter The after event for when a user updates an establishment.

EstablishmentUpdateBefore The after event for when a user updates an establishment.

EventAddAfter The after event for when calendar event information is
created.

EventAddBefore The before event for when calendar event information is
created.

EventRemoveAfter The after event for when calendar event information is
removed.

EventRescheduleAfter The after event for when calendar event datetime is changed.

EventRescheduleBefore The before event for when calendar event datetime is
changed.

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 37
EventUpdateAfter The after event for when calendar event information is
updated.

EventUpdateBefore The before event for when calendar event information is
updated.

ExaminationBatchUpdateByCSVAfter Accela Citizen Access - The after event for when a user
uploads a CSV file to batch update examination.

ExaminationRosterUpdateAfter The after event for when a user updates the examination
roster (register roster, reschedule roster, delete roster, update
score).

ExaminationSiteUpdateAfter The after event for when a user updates an examination site.

ExaminationUpdateAfter The after event for when a user updates an examination.

ExaminationUpdateBefore The before event for when a user updates an examination.

ExternalDocReviewCompleted The after event for when a user checks in a record document.

ExternalPermitStatusChange The after event for when a user updates record status.

FeeAssessAfter The after event for when a user assesses an application fee. √

FeeAssessBefore The before event for when a user assesses an application
fee.

√

FeeEstimate4PlanReviewBefore The before event for when a user creates a fee estimate for
plan review.

FeeEstimateAfter The after event for when a user creates a fee estimate in an
application intake form.

FeeEstimateAfter4ACA Accela Citizen Access - The after event for when a user
creates a fee estimate in the fee item list page.

√

FundTransferAfter The after event for when a user transfers a fund.

FundTransferBefore The before event for when a user transfers a fund.

GuidesheetUpdateAfter The after event for when a user updates a guidesheet.

GuidesheetUpdateBefore The before event for when a user updates a guidesheet.

InspectionAssignAfter The after event for when a user assigns an inspection.

InspectionAssignBefore The before event for when a user assigns an inspection.

InspectionCancelAfter The after event for when a user cancels one or more
inspections.

InspectionCancelBefore The before event for when a user cancels one or more
inspections.

InspectionMultipleScheduleAfter The after event for when a user schedules one or more
inspections for manage inspection.

√

InspectionMultipleScheduleBefore The before event for when a user schedules one or more
inspections for manage inspection.

√

InspectionResultModifyAfter The after event for when a user modifies an inspection result. √

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 38
InspectionResultModifyBefore The after event for when a user modifies an inspection result. √

InspectionResultSubmitAfter The after event for when a user submits an inspection result. √

InspectionResultSubmitBefore The before event for when a user submits an inspection
result.

√

InspectionScheduleAfter Accela Citizen Access - The after event for when a user
schedules one or more inspections.

√

InspectionScheduleBefore Accela Citizen Access - The before event for when a user
schedules one or more inspections.

√

InvoiceFeeAfter The after event for when a user invoices a fee (manually or
automatically)

√

LicenseProfessionalRemoveAfter The after event for when a user removes a licensed
professional.

LicenseProfessionalRemoveBefore The before event for when a user removes a licensed
professional.

LicProfAddAfter The after event for when a user adds a licensed professional.

LicProfAddBefore The before event for when a user adds a licensed
professional.

LicProfLookUpSubmitAfter The after event for when a user adds a reference license to a
record.

√

LicProfLookUpSubmitBefore The before event for when a user adds a reference license to
a record.

√

LicProfUpdateAfter The after event for when a user updates a licensed
professional.

√

LicProfUpdateBefore The before event for when a user updates a licensed
professional.

√

MeetingAddAfter The after event for when a user creates a meeting.
Replaces EventAddAfter.

MeetingAddBefore The before event for when a user creates a meeting.
Replaces EventAddBefore.

MeetingCancelAfter The after event for when a user cancels a meeting.

MeetingCancelBefore The before event for when a user cancels a meeting.

MeetingRemoveAfter The after event for when a user removes a meeting.
Replaces EventRemoveAfter.

MeetingRemoveBefore The before event for when a user removes a meeting.
Replaces EventRemoveBefore.

MeetingRescheduleAfter The after event for when a user reschedules a meeting.
Replaces EventRescheduleAfter.

MeetingRescheduleBefore The before event for when a user reschedules a meeting.
Replaces EventRescheduleBefore.

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 39
MeetingScheduleAfter The after event for when a user schedules a meeting.

MeetingScheduleBefore The before event for when a user schedules a meeting.

MeetingUpdateAfter The after event for when a user updates calendar event
information.

MeetingUpdateBefore The before event for when a user updates a meeting.
Replaces EventUpdateBefore.

MoveAgendaAfter The after event for when a user moves an agenda to another
meeting.

MoveAgendaBefore The before event for when a user moves an agenda to
another meeting.

OnlinePaymentPost Accela Citizen Access - Occurs after a user posts an online
payment.

OnlinePaymentRegister Accela Citizen Access - Occurs after a user submits a
payment.

OnLoginEventAfter4ACA Accela Citizen Access - Occurs after the login validation.

OnLoginEventBefore4ACA Accela Citizen Access - Occurs before the login validation.

OwnerLookUpAfter The after event for when a user creates a reference owner
after looking up the owner from reference.

OwnerLookUpBefore The before event for when a user creates a reference owner
after looking up the owner from reference.

OwnerRemoveAfter The after event for when a daily user removes an owner.

OwnerRemoveBefore The before event for when a daily user removes an owner.

OwnerSelectOnSpearFormAfter The after event for when a user attaches selected addresses
on the reference addresses look up result list portlet.

OwnerSelectOnSpearFormBefore The before event for when a user attaches selected
addresses on the reference addresses look up result list
portlet.

ParcelAddAfter The after event for when a user creates a parcel. √

ParcelAddBefore The before event for when a user creates a parcel. √

ParcelConditionAddAfter The after event for when a user adds a condition to a parcel.

ParcelLookUpBefore The before event for when a user creates a reference parcel
after looking up the parcel from reference.

ParcelMergeAfter The after event for when a user merges parcels.

ParcelMergeBefore The before event for when a user merges parcels.

ParcelRemoveAfter The after event for when a daily user removes a parcel.

ParcelRemoveBefore The before event for when a daily user removes a parcel.

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 40
ParcelSelectOnSpearFormAfter The after event for when a user attaches selected parcels on
the reference parcels look up result list portlet.

ParcelSelectOnSpearFormBefore The before event for when a user attaches selected parcels
on the reference parcels look up result list portlet.

ParcelSetDetailUserExecuteAfter The after event for the parcel set execute script.

ParcelSplitAfter The after event for when a user splits parcels.

ParcelSplitBefore The before event for when a user splits parcels.

ParcelUpdateAfter The after event for when a user updates a parcel. √

ParcelUpdateBefore The before event for when a user updates a parcel.

PartTransactionSubmitAfter The after event for when a user creates a part transaction.

PartTransactionSubmitBefore The before event for when a user creates a part transaction.

PartTransactionUpdateAfter The after event for when a user updates a part transaction.

PartTransactionUpdateBefore The before event for when a user updates a part transaction.

PaymentApplyAfter The after event for when a user clicks the Submit button on
the payment apply page.

√

PaymentApplyBefore The before event for when a user clicks the Submit button on
the payment apply page.

√

PaymentProcessingAfter The after event for when a user indicates “do pay” in the
payment processing portlet.

√

PaymentProcessingBefore The before event for when a user indicates “do pay” in the
payment processing portlet.

√

PaymentReceiveAfter Accela Citizen Access - The after event for when Accela
Citizen Access records payment allocation.

√

PaymentReceiveBefore Accela Citizen Access - The before event for when Accela
Citizen Access records payment allocation.

√

PaymentRefundAfter The after event for a payment processing/POS/record
payment refund.

PaymentRefundBefore The before event for a payment processing/POS/record
payment refund.

PaymentRefundSubmitBefore The before event for when a user submit the request to
refund a payment.

PermitIssueAfter The after event for when a user creates a permit printout.

PermitIssueBefore The before event for when a user creates a permit printout.

ProctorAssignedAfter The after even when proctors receive an assignment to one
or more examination sessions

ProctorAssignedBefore The before event for when a user assigns multiple proctors.

ProctorUnassignedAfter The after event when a proctor is unassigned (deleted) from
an examination session.

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 41
ProctorUnassignedBefore The before event for when a user removes a proctor from an
examination roster.

ProfessionalSetDetailUserExecuteAfter The after event for the professional set execute script.

ProximityAlertBefore The before event for when a user issues a workflow proximity
alert.

PublicUserEditAfter The after event for when a user updates public user
information.

PublicUserEditBefore The before event for when a user updates public user
information.

PublishCommentsAfter The after event for when a user publishes comments.

PublishCommentsBefore The before event for when a user publishes comments.

RefContactEditAfter The after event for when a user updates a contact in
reference side.

RefContactEditBefore The before event for when a user updates a contact in
reference side..

RefContactNewAfter The after event for when a user creates a contact in reference
side.

RefContactNewBefore The before event for when a user creates a contact in
reference side.

RefExamUpdateAfter The after event for when a user updates a reference
examination.

RefExamUpdateBefore The before event for when a user updates a reference
examination.

RefLicProfAddAfter The after event for when a user adds a reference licensed
professional.

RefLicProfAddBefore The before event for when a user adds a reference licensed
professional.

RefLicProfUpdateAfter The after event for when a user updates a reference licensed
professional.

RefLicProfUpdateBefore The before event for when a user updates a reference
licensed professional.

RegistrationSubmitAfter Accela Citizen Access - The after event for when a public
user submits a registration or when a public user associates a
licensed professional with his user account.

RegistrationSubmitBefore Accela Citizen Access - The before event for when a user
submits a registration.

RejectContactAssociationforPublicAfter The after event for when a user rejects a contact association
for a public user.

RelatedCapUpdateAfter The after event for when a user updates related records.

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 42
RelatedCapUpdateBefore The before event for when a user updates related records.

RemoveAgendaAfter The after event for when a user removes an agenda from a
meeting.

RemoveAgendaBefore The before event for when a user removes an agenda from a
meeting.

RenewalInfoUpdateAfter The after event for when a user creates a permit printout. √

ReportRunAfterInACA The after event for when a report is run in ACA.

ReportRunBeforeInACA The before event for when a report is run in ACA.

ReportServiceRunAfter The after event for when a user runs a report service.

ReportServiceRunBefore The before event for when a user runs a report service.

SaveAndResumeAfter4ACA Accela Citizen Access - The after event for when a user
saves and resume .

SearchMultiSeriveAfter The after event for when a user searches a service.

SelectLicenseValidation4ACA Accela Citizen Access - Occurs when the user selects a
license by the license drop-down list.

ShoppingCartCheckOutBefore The before event for when a user checks out their shopping
cart in ACA.

StrucEstLookUpAfter The after event for when a user creates a reference structure
or establishment, after looking up the owner from reference.

StrucEstLookUpBefore The before event for when a user creates a reference
structure or establishment after looking up the owner from
reference.

StrucEstRemoveAfter The after event for when a daily user removes a structure or
establishment.

StrucEstRemoveBefore The before event for when a daily user removes a structure or
establishment.

StructureAddAfter The after event for when a user adds a structure.

StructureAddBefore The before event for when a user adds a structure.

StructureUpdateAfter The after event for when a user updates a structure.

StructureUpdateBefore The before event for when a user updates a structure.

taskEditActionFormBefore The before event for when a user updates a workflow task.

TimeAccountingAddAfter Executes when time accounting entries are about to be
added.

√

TimeAccountingAddBefore Executes when time accounting entries are about to be
added.

TimeAccountingDeleteAfter Executes when time accounting entries are about to be
removed.

√

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 43
TimeAccountingDeleteBefore Executes when time accounting entries are about to be
removed.

TimeAccountingUpdateAfter Executes when time accounting entries are about to be
updated.

√

TimeAccountingUpdateBefore Executes when time accounting entries are about to be
updated.

UpdateContactTypeBefore Executes when a user attempts to change the contact type in
a record contact list (which may be on the application intake
form, or in the Contact tab of the record portlet or the records
set portlet). You can add scripts to the event to validate the
contact type change.

UpdateContactTypeAfter Executes after the user updates the contact type successfully
in a record contact list.

V360InspectionResultSubmitAfter The after event for when a user results an inspection. √

V360InspectionResultSubmitBefore The before event for when a user results an inspection √

V360ParcelAddAfter The after event for when a user adds a parcel. √

VoidFeeAfter The after event for when a user voids a (manually or
automatically)

VoidFeeBefore The before event for when a user voids a fee (manually or
automatically)

VoidPaymentAfter The after event for when a user voids a payment. √

VoidPaymentBefore The before event for when a user voids a payment. √

WorkflowAdhocTaskAddAfter The after event for when a user adds a workflow task.

WorkflowAdhocTaskAddBefore The before event for when a user adds a workflow task.

WorkflowAdhocTaskUpdateAfter The after event for when a user updates an adhoc workflow
task.

WorkflowAdhocTaskUpdateBefore The before event for when a user updates an adhoc workflow
task.

WorkflowTaskUpdateAfter Accela Citizen Access - The after event for when a user
updates a workflow task.

√

WorkflowTaskUpdateBefore Accela Citizen Access - The before event for when a user
updates a workflow task.

√

XRefContactAddressEditAfter The after event for when a user edits the cross reference
contact address.

XRefContactAddressEditBefore The before event for when a user edits the cross reference
contact address.

XRefContactAddressLookUpAfter The after event for when a user looks up a cross reference
contact address.

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 44
Working with Events

Topics:

 Searching for an Active Event

 Viewing the Full List of Accela Automation Events

 Enabling an Event

 Disabling an Event

Searching for an Active Event
Before you can view or edit an active event, you must first locate it. You must also search for an
event to associate a script with it. You can search for any enabled event.

To search for an event

1. Choose AA Classic > Admin Tools > Events > Events.

Accela Automation displays the Event Search window.

XRefContactAddressLookUpBefore The before event for when a user looks up a cross reference
contact address.

XRefContactAddressNewAfter The after event for when a user creates a cross reference
contact address.

XRefContactAddressNewBefore The before event for when a user creates a cross reference
contact address.

XRefContactAddressRemoveAfter The after event for when a user removes a cross reference
contact address.

XRefContactAddressRemoveBefore The before event for when a user removes a cross reference
contact address.

 Table 2: Event and Master Script List

Event Name Description Master
Script?

Accela Automation Scripting Guide
2: Event and Script Setup 45
2. Complete these fields:

To see a list of all the enabled events, leave the fields blank.

3. Click Submit.

Accela Automation displays the Event List window.

4. Click the red dot that appears to the left of the event that you want.

Accela Automation displays the Event Detail window.

Event Name Enter the name of the event that you want to find.

Script Title Enter the name or title of the script associated with the
event that you want to find.

Accela Automation Scripting Guide
2: Event and Script Setup 46
Viewing the Full List of Accela Automation Events
You can view the entire list of available events, including active events and disabled events.

To view the full list of Accela Automation events

1. Choose AA Classic > Admin Tools > Events > Events.

Accela Automation displays the Event Search window.

2. Leave the fields blank and click Submit.

Accela Automation displays the Event List window.

Accela Automation Scripting Guide
2: Event and Script Setup 47
3. Click Add.

Accela Automation displays the Add New Event window.

4. Click the drop-down menu to expand the list. This list contains all of the possible events.

Accela Automation Scripting Guide
2: Event and Script Setup 48
Enabling an Event
Accela provides a list of standard events for your agency. Before you can use an event, you
must enable it for your agency. Depending on the events that you choose to enable and the
script that you associate with each event, you can customize Accela Automation to
automatically perform various transactions.

To enable an event

1. Choose AA Classic > Admin Tools > Events > Events.

Accela Automation displays the Event Search window.

2. Click Submit to see a list of events enabled for your agency.

Accela Automation displays the Event List window.

3. Click Add.

Accela Automation displays the Add New Event window.

Accela Automation Scripting Guide
2: Event and Script Setup 49
4. Use the drop-down list to choose from the available events.

5. Click Add.

6. Associate a script with the event. For details, see Associating Events with Scripts on
page 55.

Disabling an Event
Accela provides a list of standard events for your agency. You can disable any currently enabled
event. When you disable an event, Event Manager no longer tracks the event or executes any
script associated with it.

To disable an event for your agency

1. Choose AA Classic > Admin Tools > Events > Events.

Accela Automation displays the Event Search window.

2. Search for the event that you want or click the Submit button to see a list of events enabled
for your agency.

Accela Automation displays the Event List.

3. Click the red dot that appears next to the event you want to disable.

Accela Automation displays the Event Detail window.

Accela Automation Scripting Guide
2: Event and Script Setup 50
4. Click Delete.

5. Click OK to confirm your choice.

Accela Automation disables the event.

Triggering Events
This section provides details on before and after event triggers.

Topics

 Triggering Meeting Agenda Events

 Triggering Meeting Schedule Events

Triggering Meeting Agenda Events
Accela Automation provides six events related to meeting agendas (records).

 AddAgendaBefore

 AddAgendaAfter

 MoveAgendaBefore

 MoveAgendaAfter

 RemoveAgendaBefore

 RemoveAgendaAfter

The same user action triggers the before and after version of an event.

 Click Select to trigger the AddAgendaBefore and AddAgendaAfter events.

 Click Submit to trigger the MoveAgendaBefore and MoveAgendaAfter events.

 Click Remove to trigger the RemoveAgendaBefore and RemoveAgendaAfter events.

To trigger a before or after agenda-related event

Accela Automation Scripting Guide
2: Event and Script Setup 51
1. Use one of the five Accela Automation portlets to access meeting details

• Select a meeting calendar as an administrator (Admin > Setup > Calendars >
Calendar > Calendar by Type > Meeting > select a meeting calendar > select a
meeting).

• Select a meeting calendar as a daily user (Calendars > Calendar by Type > Meeting >
select a meeting calendar > select a meeting).

• Select a meeting calendar from the MyTasks portlet (My Tasks > Meetings > select a
meeting).

• Select a meeting calendar from the Task Management portlet (Task Management >
select a record of the meeting task type).

• Select a meeting calendar from the Record portlet (Record > Calendar tab > select a
meeting in calendar view).

2. Click the Agenda & Vote tab.

3. Trigger a before or after AddAgenda event.

a. Click Add.

b. Enter search criteria for the record(s) to add and click Submit.

c. Select the record(s) you want to add and click Select () to trigger the event.

4. Trigger a before or after MoveAgenda event.

a. Select one or more records to move.

b. Click Move.

c. Enter search criteria for the meeting to which you want to move the records and click
Submit.

d. Select the meeting to which you want to move the agenda and click Submit to trigger
the event.

5. Trigger a before or after add remove event.

a. Select one or more records to remove and click Remove to trigger the event.

Triggering Meeting Schedule Events
Accela Automation provides four events related to meeting schedules.

 MeetingScheduleBefore

 MeetingScheduleAfter

 MeetingCancelBefore

 MeetingCancelAfter

The same user action triggers the before and after version of an event.

 Click Submit to trigger the MeetingScheduleBefore and MeetingScheduleAfter events.

 Click Cancel to trigger the MeetingCancelBefore and MeetingCancelAfter events.

Accela Automation Scripting Guide
2: Event and Script Setup 52
To trigger a before or after schedule-related event

1. Access the Records portlet.

2. Select a record for which you want to trigger the schedule-related event.

3. Click the Meetings tab.

4. Select the meeting you want to schedule or cancel.

 Trigger a before or after MeetingCancel event by clicking the Manage Meeting > Cancel
Meeting submenu.

 Trigger a before or after MeetingSchedule event.

a. Click the Manage Meeting > Schedule Meeting submenu.

b. Enter search criteria for the meeting to which you want to schedule the record and click
Submit.

c. Select the meeting for which you want to schedule the record and click Submit to trigger
the event.

Working with Scripts

Topics:

 Adding a Script

 Searching for a Script

 Editing a Script

 Deleting a Script

Adding a Script
Scripts allow you to make specific changes to your database based on the event that occurs.
For each pre-defined and enabled event, you can determine the script that you want to run for
that event. In addition to associating standard scripts with standard events, you can write
custom scripts that you want to assign to certain events.

To add a new script

1. Choose AA Classic > Admin Tools > Events > Script.

Accela Automation displays the Scripts search window.

2. Click Submit to see a list of scripts enabled for your agency.

3. Click Add.

Accela Automation displays the Add a new script page.

Accela Automation Scripting Guide
2: Event and Script Setup 53
4. Complete the necessary fields as described in Table 3: Script Details on page 53.

5. Click Add.

Searching for a Script
You can search for a script to view or edit it.

To search for a script

1. Choose AA Classic > Admin Tools > Events > Script.

2. Complete the necessary fields as described in Table 3: Script Details on page 53.

3. Click Submit.

4. Click the red dot that appears to the left of the script that you want.

 Table 3: Script Details

Script Code Enter the code or abbreviation that identifies the script.

Script Title Enter the name or title of the script.

Script Initializer If the script requires an initializer, enter it here. The initializer may be necessary
to start certain scripts and contain certain input parameters.

Script Content/Text Enter the script text here. You can also copy and paste the script into this text
area.

Accela Automation Scripting Guide
2: Event and Script Setup 54
Editing a Script
For each pre-defined and enabled event, you can determine the script that you want to run for
that event. Accela provides several standard scripts. In addition to writing original scripts, you
can modify standard scripts. You can make changes to any existing script that is currently on
your system.

To edit a script

1. Choose Administrator Tools > Events > Script.

2. Search for the script that you want.

3. Complete the necessary fields as described in Table 3: Script Details on page 53.

4. If you want to test the script, click the Script Test button.

5. Click Save.

Deleting a Script
You can delete any script.

To delete a script

1. Choose Administrator Tools > Events > Script.

2. Search for the script that you want.

3. Click Delete.

4. Click OK to confirm your choice.

Accela Automation Scripting Guide
2: Event and Script Setup 55
Associating Events with Scripts
After you enable an event and add a script to your system, you can associate a script with an
event. Associating a script with an event allows Accela Automation to execute or run the script
when the event occurs.

To associate an event with a script, the script must already exist. For information on adding a
script to your system, see Working with Scripts on page 52.

Example Use Case

Someone applies for a permit and you want Accela Automation to check the license expiration
date to confirm that the license has not expired. You select an event such as
ApplicationSubmitBefore and then associate a script that compares license expiration dates
with the current date.

To associate an event with a script

1. Choose Administrator Tools > Events > Script.

2. Search for the event that you want. For details, see Searching for an Active Event on
page 44.

3. Use the Script Name drop-down list to choose the script that you want to associate with
this event.

4. Click Save.

56
CHAPTER 3:

MASTER SCRIPTS
Accela Automation provides some Out-Of-The-Box master scripts. Accela Automation defines a
1-1 relationship between the master script and the event which triggers master script execution.
Accela Automation uses the same base name for the master script and the associated trigger
event. The following lists these master scripts.

AdditionalInfoUpdateAfter AdditionalInfoUpdateBefore

ApplicationConditionAddAfter ApplicationConditionDeleteBefore

ApplicationConditionUpdateAfter ApplicationConditionUpdateBefore

ApplicationSpecificInfoUpdateAfter ApplicationSpecificInfoUpdateBefore

ApplicationStatusUpdateAfter ApplicationStatusUpdateBefore

ApplicationSubmitAfter ApplicationSubmitBefore

CapSetProcessing ContactAddAfter

ContactAddBefore ContactEditAfter

ContactEditBefore ContactRemoveAfter

ContactRemoveBefore ConvertToRealCapAfter

DocumentUploadAfter DocumentUploadBefore

FeeAssessAfter FeeAssessBefore

FeeEstimateAfter4ACA InspectionMultipleScheduleAfter

InspectionMultipleScheduleBefore InspectionResultModifyAfter

InspectionResultModifyBefore InspectionResultSubmitAfter

InspectionResultSubmitBefore InspectionScheduleAfter

InspectionScheduleBefore InvoiceFeeAfter

LicProfLookupSubmitAfter LicProfLookupSubmitBefore

LicProfUpdateAfter LicProfUpdateBefore

ParcelAddAfter ParcelAddBefore

ParcelUpdateAfter PaymentApplyAfter

PaymentApplyBefore PaymentProcessingAfter

Accela Automation Scripting Guide
3: Master Scripts 57
In addition to event-specific master scripts, Accela Automation provides the following additional
master script files:

Topics:

 Understanding the EMSE Execution Path

 Creating a New Script

 Configuring the Universal Script

 Configuring Global Variables

 Adding Custom Functions

PaymentProcessingBefore PaymentReceiveAfter

PaymentReceiveBefore RenewalInfoUpdateAfter

TimeAccountingAddAfter TimeAccountingDeleteAfter

TimeAccountingUpdateAfter V360InspectionResultSubmitAfter

V360InspectionResultSubmitBefore V360ParcelAddAfter

VoidPaymentAfter VoidPaymentBefore

WorkflowTaskUpdateAfter WorkflowTaskUpdateBefore

UniversalMasterScript Provides a template for creating additional event-specific master scripts.

ScriptTester Enables you to test script controls without triggering an event from the
user interface.

INCLUDES_ACCELA_F
UNCTIONS

Included by each master script during runtime. Contains all standard
master script functions provided by Accela. A copy of each of these
standard functions, in previous framework versions, had to be present in
each of the individual master script files. Do not modify this file outside
of official Accela master script releases.

INCLUDES_ACCELA_F
UNCTIONS_ASB

Included by each master script during runtime. Similar to
INCLUDES_ACCELA_FUNCTIONS but contains Accela provided
functions specific to the ApplicationSubmitBefore event.

INCLUDES_ACCELA_G
LOBALS

Included by each master script during runtime. Contains global flags
that are responsible for the setup the EMSE master script environment.
Each master script file, from previous framework versions, set these
flags individually in the master script file. Some examples of these
global settings are enableVariableBranching, showDebug,
showMessage, and useAppSpecificGroupName.

INCLUDES_CUSTOM Contains customizations made to the master script framework. Every
executed master script evaluates the script code in this file. Segregation
of customizations in this file enables you to upgrade and maintain the
EMSE master script framework without an impact to your
customizations.

Accela Automation Scripting Guide
3: Master Scripts 58
Viewing Master Scripts
Accela Automation provides the Master Scripts and Custom Script administration tools as part
of the Event administration tools. These tools enable you to view available master scripts, and
to view or edit the custom script.

To view a master script

1. Choose AA Classic > Admin Tools > Events > Master Scripts.

Accela Automation displays the Master Scripts search window.

2. In the Master Script Version drop-down list, select the Master Script Version you want to
view.

3. Click the Submit button to see the list of master scripts provided in the version.

Accela Automation displays the master script list.

For the complete master script list, see Table 2: Event and Master Script List on page 31.

4. Click the red dot that appears next to the master script you want to view.

Accela Automation displays the master script detail.

To view and edit a custom script

1. Choose AA Classic > Admin Tools > Events > Custom Script.

Accela Automation displays the custom script detail.

The script name of the custom script is INCLUDES_CUSTOM.

2. Edit the script code of the custom script in the Master Script Text field.

For more information on editing custom script, see Adding Custom Functions on page 63.

Understanding the EMSE Execution Path
Figure 12: EMSE Execution Path shows that the master script execution process leverages four
script include files.

Note: You can upgrade the master script version when you upgrade
Accela Automation. Accela Automation makes all versions of the
master scripts available at the same time. Administrators can set
the Standard Choice MASTER_SCRIPT_DEFAULT_VERSION
to continuously apply a specific version of master scripts,
regardless of the master script upgrades.

Accela Automation Scripting Guide
3: Master Scripts 59
Figure 12: EMSE Execution Path

Event Start

INCLUDES_
ACCELA_FU

NCTIONS

INCLUDES_
ACCELA_GL

OBALS

INCLUDES_
CUSTOM

Event Global
Parameters

Event Specific
Parameters

Pre-Execute
Standard Choices

Master Script
Control String

Standard Choices

Event End

Event level global that control pre-execute and event
entry points

Is ASB?

No

INCLUDES_
ACCELA_FU
NCTIONS_A

SB

ApplicationSubmitBefore utilizes a special set of functions due to
not having data available in the database yet.

Master Script Functions are now loaded and available for use
once the include is completed.

Master Script globals are now loaded and logged via
debugging. Used to setup defaults for debugging , version
checks, variable branching, and other master script flags .

Custom Include file is executed and included for
use in scripting

Event Specific Parameters are loaded and
available for use

Script controls are invoked for the preExecute
Standard choices associated to either before or
after events

Script Controls are Invoked for event
level Standard choice

Accela Automation Scripting Guide
3: Master Scripts 60
Creating a New Script
Accela Automation provides master scripts for many of the events. Use the
UniversalMasterScript as a template to create scripts for the remaining events.

Accela Automation requires a separate script per event to:

 Identify the entry point Standard Choice that contains the script controls for that event
(desired actions when triggered)

 To create and populate event-specific variables needed for each specific event (eg. wfTask,
inspType)

To create a new script

1. Copy the contents of the UniversalMasterScript file and paste the contents into your script
development environment (text editor or IDE).

2. Save the new script file with the same base name as the event to which you plan to
associate the new script.

3. Create a new standard choice with the same name as the event. This standard choice
becomes the entry point standard choice for this event (Chapter 4: Script Controls on
page 65).

4. Modify the new script file as required (Configuring the Universal Script on page 60).

5. Install the script file (Chapter 2: Event and Script Setup on page 30).

Configuring the Universal Script
When you create a new script file, you copy the contents of the UniversalMasterScript file into
your new script file (Creating a New Script on page 60). You then need to modify this copied
content to configure it for your particular application.

To configure the universal script

1. Locate the START Configurable Parameters section of the master script.

2. Set the value of the controlString variable to the name of the Standard Choice. The
Standard Choice name must match the name of the event for which the Standard Choice
contains the script controls.

var controlString = "<Standard Choice>"

3. Set the value of the preExecute variable to indicate whether to trigger the script before or
after the event.

var preExecute = "<before or after>"

where:

<before or after> is PreExecuteForBeforeEvents for before events and
PreExecuteForAfterEvents for after events.

Accela Automation Scripting Guide
3: Master Scripts 61
4. Set the documentOnly variable to specify whether or not to display the hierarchy of
standard choice steps.

var documentOnly = false

5. Configure the remaining sections as required.

• The following section of the master script configures the internal version of the master
script file and the global master scripts to include during runtime.

var SCRIPT_VERSION = 2.0

eval(getScriptText("INCLUDES_ACCELA_FUNCTIONS"));

eval(getScriptText("INCLUDES_ACCELA_GLOBALS"));

eval(getScriptText("INCLUDES_CUSTOM"));

• This section includes the scripting to evaluate the value of the documentOnly variable
configured in the previous section.

if (documentOnly) {

doStandardChoiceActions(controlString,false,0);

aa.env.setValue("ScriptReturnCode", "0");

aa.env.setValue("ScriptReturnMessage", "Documentation
Successful. No actions executed.");

aa.abortScript();

}

• The BEGIN Event Specific Variables section loads the values for the variables
of the associated event (Figure 13: AdditionalInfoUpdateAfter Variables).

Note: The ApplicationSubmitBefore event includes the
INCLUDES_ACCELA_FUNCTIONS_ASB master script instead
of the INCLUDES_ACCELA_FUNCTIONS master script

Note: The master script files include the INCLUDES_CUSTOM master
script as a placeholder to incorporate customizations to the
master script. Accela Automation does not provide the
INCLUDES_CUSTOM master script so as not to overwrite
existing master script customizations during system upgrades.

Accela Automation Scripting Guide
3: Master Scripts 62
Figure 13: AdditionalInfoUpdateAfter Variables

For example, Accela Automation uses the following variables for the
AdditionalInfoUpdateAfter event.

var aiBuildingCount =
aa.env.getValue("AdditionalInfoBuildingCount");

var aiConstructionTypeCode =
aa.env.getValue("AdditionalInfoConstructionTypeCode");

var aiHouseCount =
aa.env.getValue("AdditionalInfoHouseCount");

var aiPublicOwnedFlag =
aa.env.getValue("AdditionalInfoPublicOwnedFlag");

var aiValuation =
aa.env.getValue("AdditionalInfoValuation");

This variable list corresponds to the default set of
variables defined for the event.

• After logging event specific variable, the master script executes the Main Loop by
performing the actions prescribed by the applicable Standard Choice script controls.

doStandardChoiceActions(controlString,true,0);

Configuring Global Variables
Table 4: Configurable Global Parameters provides parameters you can configure in the
INCLUDES_ACCELA_GLOBALS file.

Note: The INCLUDES_ACCELA_FUNCTIONS master scripts resolves
the CurrentUserID, PermitId1, PermitId2, and PermitId3 global
variables.

Accela Automation Scripting Guide
3: Master Scripts 63
Adding Custom Functions
Accela Automation master scripts provide a placeholder to include the INCLUDES_CUSTOM
master script file.

eval(getScriptText("INCLUDES_CUSTOM"));

If you need to create new functions, save your customizations in a file named
INCLUDES_CUSTOM.

If the INCLUDES_ACCELA_FUNCTIONS and INCLUDES_CUSTOM contain a function with
the same name, the function in the INCLUDES_CUSTOM file overwrites the function in the
INCLUDES_ACCELA_FUNCTIONS file.

Do not modify functions in the INCLUDES_ACCELA_FUNCTIONS file. If you want to modify a
function from the INCLUDES_ACCELA_FUNCTIONS file, create a same named function with
the different functionality in the INCLUDES_CUSTOM file.

As a best practice, use a commenting structure in your INCLUDES_CUSTOM file to keep it
organized and easy to interpret. The following provides and example.

/**************** Modified Accela Standard Functions
(Start) **************/

 Table 4: Configurable Global Parameters

Parameter Name Default Value Description

showMessage false Controls whether or not to show the messages
added by the comment() function.

showDebug false Controls whether to show the debug messages
during script execution.

documentOnly false Controls whether to spool out standard choices
to the debug window.

disableTokens false Enables or disabled the token substitution

useAppSpecificGroupName false Enables or disables use of group name when
populating and referring to ASI. When enabled,
the ASI subgroup name prepends to all ASI field
names, which ensures the uniqueness of ASI
field names required by script controls.

useTaskSpecificGroupName false Enables or disables use of group name when
populating and referring to TSI

enableVariableBranching true Enables the use of variable branching in the
branch function

maxEntries 99 Specifies the maximum number of script
controls in a single standard choice branch

Note: To prevent the Accela Automation installer from overwriting
existing customizations during a product upgrade, Accela
Automation does not provide the INCLUDES_CUSTOM master
script file as part of the Accela Automation installer.

Accela Automation Scripting Guide
3: Master Scripts 64
//All modified Accela standard functions will live here

/**************** Modified Accela Standard Functions
(End) ****************/

/**************** Custom Building Functions (Start)
**************/

//All custom building functions will live here

/**************** Custom Building Functions (End)
****************/

/**************** Custom Licensing Functions (Start)
**************/

//All custom licensing functions will live here

/**************** Custom licensing Functions (End)
****************/

/**************** Custom Planning Functions (Start)
**************/

//All custom planning functions will live here

/**************** Custom planning Functions (End)
****************/

/* Start a new section for each logical group */

65
CHAPTER 4:

SCRIPT CONTROLS
Topics:

 Understanding Script Controls

 Understanding Script Control Syntax

 Understanding Criteria (the If Clause)

 Understanding Actions (the Then Clause)

 Specifying Script Controls as Standard Choices

 Understanding Script Control Branching

 Naming Inspection Result Events

 Exploring an Object

Understanding Script Controls
Accela Automation uses Standard Choice script controls to instruct Accela Automation how to
perform before and after event activities. Each script control provides parameters to master
script functions (Appendix A: Master Script Function List on page 114) within a framework of
conditional (if-then-else) expressions. A single Standard Choice can contain multiple script
controls. The master script evaluates the script controls in the order that the Standard Choice
numbering specifies.

Script controls use the caret (^) symbol to delimit the if clause (predicate) from the then clause
(consequent) and the else clause (alternative) in a single conditional expression. Accela
Automation interprets the first clause as the if clause, the second clause as the then clause, and
the third (optional) clause as the else clause.

Each clause in a script control calls a master script function and provides parameter values
required by that function. The variables associated with the scriptable event () determine the
scope of possible variables that the script control provides to the master script function.

Enclose master script function parameters in parenthesis. Use a comma to delimit master script
function parameters. Enclose string parameters in double straight quotes. Appendix D:
JavaScript Primer on page 244 provides additional Javascript syntax elements you can use in
script controls.

Example Use Case

Figure 14: Script Control Syntax shows a single script control. This script control says, “If the
current record type is not a Building/Reroof type, then assess but do not invoice all of the fees

Accela Automation Scripting Guide
4: Script Controls 66
from the fee schedule called BLDCR05.” The master script function that the script control calls,
appMatch for example, provides a return value, in this case true or false, to determine whether
to perform the function in the then clause.

Figure 14: Script Control Syntax

Example Use Case

Figure 15: Script Control Structure (if/then/else) says, “If Acres Disturbed is less than 5 then
assess but do not invoice the SMALLACRE fee, else assess but do not invoice the BIGACRE
fee.”

Figure 15: Script Control Structure (if/then/else)

Understanding Script Control Syntax

Topics:

 Understanding Case Sensitivity

 Understanding Variable and Function Names

 Understanding Curly Brackets

 Understanding Argument Types

Understanding Case Sensitivity
The master scripts and underlying JavaScript require case sensitivity for function calls or when
referring to a variable. For example in Figure 15: Script Control Structure (if/then/else) you see
the function addFee called in both the then and else action. If you write the same script control
but call the function AddFee, the script returns an error that the function AddFee does not exist.
The script considers addFee and AddFee two different function names.

!appMatch("Building/Reroof/NA/NA")^ addAllFees("BLDCR05","FINAL",1,"N")

Criteria Action

separator (^)

IF this is true, THEN do this

{Acres Disturbed} < 5 ̂addFee("SMALLACRE","FEESCHED","BLD",1,"N") ^ addFee("BIGACRE","FEESCHED","BLD",2,"N");

Criteria Then
separator (^)

IF this is
true,

THEN do this

separator (^)

Else

Else do this

Accela Automation Scripting Guide
4: Script Controls 67
Understanding Variable and Function Names
Variables and function names in the master scripts follow the camelCase practice. For example
totalSquareFeet, taxiNumber, addFee(), etc. Always be aware of case sensitivity as it many
times could be the culprit of causing script errors.

Understanding Curly Brackets
We already saw the usage of the caret (^) to form conditional statements, another master script
specific syntax is the usage of curly brackets { }. When a user triggers an event, Accela
Automation calls the associated master script. Before EMSE evaluates the first line of script
controls, the master script does some pre-work to initialize and set the value of several global
and event-specific variables that the script controls can reference. Some of this pre-work loads
application information, task information, and parcel attributes into individual variables. The
script control encloses each of these variables between two curly brackets (Figure 15: Script
Control Structure (if/then/else)). For example, {Acres Disturbed} in the script control condition
indicates an application specific Information field.

Understanding Argument Types
Always enclose strings in double quotes. For example:

 the criteria -- {Land Use} == “Farming”

 setting the value of a variable -- layerName = “Zoning”

 a function call that accepts string parameters addFee(“AppFee”,”BLD_11”,”FINAL”,1,”Y”)

Do not enclose numeric fields in double quotes.

Script controls must be valid JavaScript. If a script control deviates from JavaScript syntax,
outside of that which is unique to the master scripts, syntax errors occur.

Understanding Criteria (the If Clause)

Topics:

 Understanding Criteria with Multiple Conditional Statements

Criteria must always evaluate to either true or false. A criteria statement can contain logical
operators, such as ==, >, >=, <, <=, or != to evaluate if a statement is true or false, and can also
call functions that return true or false (Table 5: Criteria Examples with Single Operators).

Accela Automation Scripting Guide
4: Script Controls 68
 Table 5: Criteria Examples with Single Operators

Criteria Description

true If you use a true as the if clause, the
specified action always executes.

appMatch(“Building/Commercial/*/*”) The appMatch function returns true or false
depending on whether the current record
type matches the record type in the function
parameter. The asterisks (*) indicate a
wildcard. In this example, any record types
that start with Building/Commercial return a
true.

!appMatch(“Building/Commercial/*/*”)
appMatch(“Building/Commercial/*/*”)
!= true

These two examples mean the same thing,
with different syntax.
Both say, if the current record type is not
under Building/Commercial do the action.

inspType == “Final Inspection” Use double equals (==) check whether a
value equals another variable or a string. In
the example, if the value for the inspType
variable of the triggered event equals “Final
Inspection” then execute the associated
action.

{STRUCTURE DETAILS.Total Square Feet}
>= 2000

You can use criteria to test the value of an
Application Specific Information. In the
example, if the value of the ASI field name
Total Square Feet within the ASI subgroup
STRUCTURE DETAILS equals or is greater
than 2000, then execute the action.
A period delimits the ASI subgroup name
which precedes the ASI field name.

Note: You can configure a global
variable to precede all ASI field
names with the ASI subgroup
name (Configuring the Global
Variables on page 268).

{ParcelAttribute.Neighborhood} ==
“Downtown Area”}

Similar to ASI fields, enclose a parcel
attribute in curly brackets, and prepend it
with ParcelAttribute and a period separator.
In the example, if the parcel attribute
Neighborhood equals Downtown Area then
execute the associated action.

Accela Automation Scripting Guide
4: Script Controls 69
Understanding Criteria with Multiple Conditional
Statements

Criteria (the if clause) can contain multiple conditional statements separated by the logical “and”
operator (&&) and/or the logical “or” operator (||). All “and” conditions must be true in order for
the criteria to be true. Only one “or” condition needs to be true in order for the criteria to be to
true.

You can use as many logical operators in your criteria as you need to satisfy your business
rules. You use parenthesis to specify the evaluation order of criteria with multiple conditions and
multiple operators (Table 6: Criteria Examples with Multiple Operators).

proximity(“GIS”,”Schools”,parseInt({
Number of feet}));

Similar to the appMatch function example,
the function proximity returns true or false.
The function checks to see if the parcel for
the current record falls within a buffered
distance on a layer within GIS. The example
checks whether the current record’s parcel is
within a certain number of feet (a value
specified in an ASI field).

!taskStatus(“Permit
Issuance”,”Issued”);

The taskStatus checks to see if a workflow
task currently has a particular status. The
example checks to see if the status of the
permit issuance task updated to issued. You
can use this type of check to prevent
inspection scheduling before permit
issuance.

 Table 6: Criteria Examples with Multiple Operators

Criteria Description

inspType == “Final Inspection” &&
!isScheduled(“Electrical”)

This condition occurs during an inspection event. The
criteria checks whether the inspection type that triggered
the event is a final inspection and whether Accela
Automation scheduled an electrical inspection.
You can use this criteria during an
InspectionScheduledBefore event to prevent a final
inspection before an electrical inspection.

 Table 5: Criteria Examples with Single Operators (Continued)

Criteria Description

Accela Automation Scripting Guide
4: Script Controls 70
Understanding Actions (the Then Clause)
The right side of the script control (to the right of the caret) tells Accela Automation what to do if
the criteria evaluates to true. In most cases the action portion calls a master script function to
perform an action (Appendix A: Master Script Function List on page 114).

To execute multiple actions, you can write your script controls two ways; 1) list each action
separated by a semicolon (;) on the same line (Table 7: Multiple Actions on Same Line), or 2)
put each action on a different line (Table 8: Multiple Actions on Different Lines).

When you put multiple actions on different lines, start each new line with a caret (^).

Best practice recommends the multiple line approach due to width limitations for Standard
Choice item entries.

feeExists(“LICFEE”) && balanceDue <= 0 This condition checks to see if the fee item LICFEE exists
on the current record and whether the balance due on
that fee item is less than or equal to 0.
You can use this condition to ensure that the license
includes the required license fee and that the applicant
does not owe any fees.
Master scripts set the balanceDue variable before Accela
Automation evaluates the script controls.

wfTask == “Supervisor Review” &&
(wfStatus == “Approved” || wfStatus ==
“Not Required”)

This criteria uses parenthesis to evaluate the “or” clause
before evaluating the “and” clauses. The criteria says, If
you update the Supervisor Review task to Approved or
Not Required, do the associated action.
An alternative way to write this criteria is: wfTask ==
“Supervisor Review” &&
matches(wfStatus,”Approved”,”Not Required”).

Note: The matches function works similarly to a SQL
IN clause. It is checking to see if the value in
the first parameter is equal to any of the
following parameters.

 Table 7: Multiple Actions on Same Line

Value Description

01 {Review Required} == “Yes” ^ addFee(“REVIEWFEE”,”FEESCHEDULE”,”FINAL”,1,”Y”);
scheduleInspection(“Special Review Inspection”,1); //any additional action…

 Table 8: Multiple Actions on Different Lines

Value Description

01 {Review Required} == “Yes” ^ addFee(“REVIEWFEE”,”FEESCHEDULE”,”FINAL”,1,”Y”) ;

02 ^ scheduleInspection(“Special Review Inspection”,1);

03 ^ //any additional needs for the action…

 Table 6: Criteria Examples with Multiple Operators (Continued)

Criteria Description

Accela Automation Scripting Guide
4: Script Controls 71
To maintain consistency, best practice recommends the use of semicolons at the end of each
line, even for single action script controls (Table 9: Single Action Script Controls with
Semicolons).

Specifying Script Controls as Standard Choices
Figure 16: Standard Choice Annotated shows a Standard Choice script control named
ApplicationSubmitAfter and Table 10: Standard Choice Script Controls defines the components
on the Standard Choice UI.

Figure 16: Standard Choice Annotated

 Table 9: Single Action Script Controls with Semicolons

Action Description

activateTask(“Plan Review”); Activates the workflow task on the current
record specified by the first parameter.

addAppCondition(“Permit”,”Applied”,”Re-Inspection
Fee”,”Re-Inspection Fee”,”Hold”);

Applies a hold condition to the current record
with the specific type, name, and
description.

childApp =
createChild(“Building”,”Commercial”,”Plumbing”,”NA”,”
New Walmart”);

Creates a child record for the Building/
Commercial/Plumbing/NA record type
instance named New Walmart.

editAppSpecific(“Total Value”,parseInt({Sq Ft}) *
parseInt({Price per Sq Ft}));

Updates the ASI field Total Value to the
product of the ASI fields {Sq Ft} and {Price
per Sq Ft}.

Accela Automation Scripting Guide
4: Script Controls 72
Some additional standard choice details to be remember:

 Standard Choices do not have an auto-save feature. Update your Standard Choice often to
ensure you do not lose your work.

 You cannot delete Standard Choices. Be careful when naming your Standard Choices.

 You cannot lock a Standard Choice. An update someone else makes to a Standard Choice
refreshes the Standard Choice with their changes and wipes out any changes you might
have made, but not yet committed.

 Table 10: Standard Choice Script Controls

Name Description

A Name Standard Choice name. The master script for each event designates the name of
the standard choice that is the entry point for script execution. A script control can
implement the branch function to refer to other script controls.

B Description Text area used to describe the purpose of the script controls that the Standard
Choice contains. You can use this area to maintain a script control change log.

C Status You can designate a Standard Choice as Enabled or Disabled. When disabled,
Accela Automation does not execute the script controls in the Standard Choice
and does not return an error if a master script calls the Standard Choice.

D Type Specifies the type of Standard Choice. Use EMSE for script controls. The EMSE
type designation does not affect any Accela Automation functions.

E Value Best practice recommends that you increment script controls by ten (eg. 10, 20,
30) to leave room for inserted script controls in the future. As of version 2.0 of the
master script framework does not require sequential script control numbering.

F Value Desc Contains the script controls.

G Debug
Options

showMessage – when set to true, this option presents a pop-up window to the
user with a custom message about script execution.
showDebug – when set to true,1, 2 or 3, this option present a pop-up window
that displays debug information including variable values and script control
results.

H Script
Controls
Example

Lines 20-70 contain script control examples. The master script evaluates script
controls in the order the Standard Choice specifies.

I Active You can set a script control to Active or Inactive. Select Update to enable a
change. Accela Automation skips over script controls set to Inactive.

J Delete You can delete a script control. After confirming a deletion, Accela Automation
permanently removes the item. You cannot undo a delete operation.

K Update Use to commit changes. This includes updating the description, status, type,
value, value desc, and active flag.

L Add Enables the addition of a new Standard Choice.

M Cancel Enables you to navigate back to the page from which you came without
committing changes.

Accela Automation Scripting Guide
4: Script Controls 73
Understanding Script Control Branching

Topics:

 Using Branching to Implement a For Loop

 Using Pop-Up Messages

 Using Data Validation

 Using Variable Branching

 Branching to the Same Standard Choice from Different Events

Each individual master script specifies the Standard Choice that provides the script controls for
processing an event (Figure 17: Setting the controlString).

Figure 17: Setting the controlString

The master script represented in Figure 17: Setting the controlString is for the event
ApplicationSubmitAfter event. The value of the controlString variable name of the Standard
Choice. For most master scripts the controlString value matches the event name for which the
Standard Choice contains the script controls.

Master script evaluation of script controls begins with the first line in the Standard Choice and
ends with the last line in the Standard Choice.

You can branch a script control process from one Standard Choice to another Standard Choice.
The branch script control action functions like a sub-routine in traditional programming.

When a master script encounters a branch script control action, the master script stops
evaluation of the current standard choice and begins evaluation of the script controls in the
branched to Standard Choice. Use the following syntax to specify a branch action:

branch(“<Standard Choice Name>”)

where: <Standard Choice Name> is the name of the Standard Choice containing the branched
to script controls.

In the example branch action (Table 11: Branch Action Example) the master script branches to
the “Calculate Permitting Application Fees” Standard Choice when a workflow approves an
application for processing. The master script then evaluates all the script controls in the
“Calculate Permitting Application Fees” Standard Choice implement the application fees’
business rules.

After the master script evaluates all script controls in the branched to Standard Choice, the
master script returns to the place that contains the originating branch action, evaluates anymore
actions that remain on the same line, then moves onto the next line in that Standard Choice
(Figure 18: Branching Flow).

 Table 11: Branch Action Example

Value Description

10 wfTask == "Application Acceptance" && wfStatus == "Approve for Processing" ^
branch("Calculate Permitting Application Fees");

Accela Automation Scripting Guide
4: Script Controls 74
Figure 18: Branching Flow

You can branch to as many levels as required. The same rules that apply single level branching
apply to multiple level branching. The master script completes evaluation of all script controls in
the lowest level Standard Choice to which you branch first, and completes evaluation of all the
script controls in the highest level Standard Choice, the Standard Choice that served as the
entry point for the master script, last (Figure 19: Multiple Level Branching).

Figure 19: Multiple Level Branching

The flow of script control shown in Figure 19: Multiple Level Branching is as follows:

 Begin script control evaluation with line 01 of “WorkflowTaskUpdateAfter”

 Branch line 01 of “WorkflowTaskUpdateAfter” to “Calculate Permitting Application Fees”

 Continue script control evaluation with line 01 of “Calculate Permitting Application Fees”

 Branch line 02 of “Calculate Permitting Application Fees” to “Send Email Notifications”

 Continue script control evaluation with line 01 of “Send Email Notifications”, and continue
script control evaluation through line 05

 Return to “Calculate Permitting Application Fees” and continue to evaluate script controls
that follow the branch action, on line 02 through line 05

 Return to “WorkflowTaskUpdateAfter” and continue to evaluate script controls that follow
the branch action, on line 01 through line 02

Accela Automation Scripting Guide
4: Script Controls 75
 End script control evaluation after evaluating line 02 of “WorkflowTaskUpdateAfter”

Using Branching to Implement a For Loop
By default, JavaScript uses curly brackets { } to indicate the start and end of a unit of code for
conditional statements or loops. In master script syntax, curly brackets indicate retrieval of a
value (Understanding Curly Brackets on page 67) not the start and end of a unit of code. As a
workaround, use branching to implement body of code functionality and loop functionality.

Table 12: Incorrect Loop Using Curly Brackets provides an incorrect example of a loop
implemented with curly brackets.

The master script returns several errors for these script controls due to incorrect use of curly
brackets:

 Line 01 opens a curly bracket but does not close the curly bracket on the same line

 Line 02 closes a curly bracket but does not open the curly bracket on the same line

To workaround the syntax issue, you can use a branch action to designate a body of code for a
loop (Table 13: Branch Implementation for Body of Code Loop and Table 14: Contact Email
Loop).

When using the branch action for a body of code loop, best practice prescribes appending the
word “loop” to the end of the Standard Choice name.

Using Pop-Up Messages
Master scripts use two variables to specify whether or not to complete the transaction and the
message contents to display in a pop-up window. The ScriptReturnCode variable specifies
whether or not to complete the transaction.

aa.env.setValue("ScriptReturnCode", "<value>");

 Table 12: Incorrect Loop Using Curly Brackets

Value Description

01 contactArray.length > 0 ^ for (ca in contactArray) { thisContact = contactArray[ca];

02 ^ if (thisContact["email"] != "") email("noreply@accela.com",thisContact["email"],"Permit
Update","Your permit has been issued."); }

 Table 13: Branch Implementation for Body of Code Loop

Value Description

01 contactArray.length > 0 ^ for (ca in contactArray) branch("Contact Email Loop");

 Table 14: Contact Email Loop

Value Description

01 true ^ thisContact = contactArray[ca];

02 ^ if (thisContact["email"] != "") email("noreply@accela.com",thisContact["email"],"Permit
Update","Your permit has been issued.");

Accela Automation Scripting Guide
4: Script Controls 76
where: <value> can be 0 or 1 and:

 0 – indicates to proceed as normal

 1 – stop the user action and return to the previous page.

The ScriptReturnMessage variable specifies the content of a message to display in a pop-up
window.

aa.env.setValue("ScriptReturnMessage", "<myMessage>");

where: <myMessage> contains the content of the message to display.

You can use the ScriptReturnMessage to:

 notify users of an additional required activity

 notify users of a completed an activity (sent an email and added a condition, for example)

 notify users of useful information (the current location of the application, for example).

Figure 20: Pop-Up Message Example shows and example of a pop-up message and the
accompanying variables in the master script.

Figure 20: Pop-Up Message Example

You can call the comment function for different script control actions to generate message text
specific to evaluation of particular master script functions. Each message returned from the
comment function displays on a new line in the pop-up window.

To display a pop-up message after evaluation of the last script control, set the showMessage
function to true. If you do not set the showMessage function to true, no message displays,
regardless of the number of times you call the comment function.

Table 15: Script Controls for Displaying Pop-up Messages shows how to call the comment and
showMessage functions from a script control.

Note: Accela Automation does not display an empty message.

 Table 15: Script Controls for Displaying Pop-up Messages

Value Description

10 true ^ showMessage = true;

Accela Automation Scripting Guide
4: Script Controls 77
Figure 21: Message Window shows the resulting pop-up window generated by the script
controls in Table 15: Script Controls for Displaying Pop-up Messages resulting from submission
of a service request in Accela Automation.

Figure 21: Message Window

You can use HTML tags in the strings submitted to the comment function to add additional
formatting (bold, underlined, additional blank lines, for example).

The EMSE_DISABLE_MESSAGES Standard Choice controls display of messages to internal
and public users. If you set the entry for either InternalUsers or PublicUsers to “Yes”, no pop-up
messages display to the user.

Using Data Validation
You can use a ‘before’ event type to validate submitted data, before saving to the database
(Understanding Events on page 17), and cancel the transaction if the submitted data does not
meet the data validation business rules that your scripts prescribe.

If a data submission attempt fails data validation, provide a message to the user as to why you
cancelled the transaction (Using Pop-Up Messages on page 75). To stop the transaction, set
the cancel variable in the script control to true.

 cancel = true

Table 16: Script Control for Data Validation provides script control example that cancels a
transaction and tells the user why Accela Automation cancelled the transaction. Make sure that

20 true ^ comment("The service request submission is successful");

30 true ^ comment("Please remind the citizen to sign up on Accela Citizen Access to submit future
requests and receive email status updates.");

Note: If you set the showMessage function to true in an early evaluated
script control, but the pop-up message never appears, you can
set the showMessage function to false in a later evaluated script
control.

 Table 15: Script Controls for Displaying Pop-up Messages

Value Description

Accela Automation Scripting Guide
4: Script Controls 78
the message indicates the reason for cancelling the transaction so the user can correct the
situation.

Figure 22: Cancelled Transaction Message shows the message displayed to the user.

Figure 22: Cancelled Transaction Message

Data validation can be especially helpful for many events, including the following:

 ApplicationSubmitBefore

 WorkflowTaskUpdateBefore

 InspectionScheduleBefore

 InspectionResultSubmitBefore

 PaymentReceiveBefore

 ApplicationStatusUpdateBefore

 UpdateContactTypeBefore

Using Variable Branching
To enable variable branching for all master scripts, set the enableVariablebranching variable in
the “User Configurable Parameters” section of the INCLUDES_ACCELA_GLOBALS script to
true (Configuring the Global Variables on page 268).

enableVariablebranching = true;

Figure 23: ApplicationSubmitAfter – Without Variable Branching shows an example of how the
ApplicationSubmitAfter Standard Choice uses branching to organize scripts.

 Table 16: Script Control for Data Validation

Value Description

01 {Project Name} == "" ^ showMessage = true; comment(“You must designate a 'Project Name' in
the ASI prior to processing the application"); cancel = true;

Note: When you set variable branching to true, the documentOnly
functionality does not work.

Accela Automation Scripting Guide
4: Script Controls 79
Figure 23: ApplicationSubmitAfter – Without Variable Branching

Without variable branching, you provide a separate script control branch action for each four
level record type specification. If you have many unique record types in your implementation
that require scripting, this approach involves many lines of script controls.

With variable branching, you use variables to specify the argument of the branch function
instead of a literal string value. The master scripts resolve these variables and the branch
function calls the appropriate Standard Choice.

Variable branching enables the branch function to accept string variables, in addition to hard
coded strings concatenated together, as a single parameter. For example, with variable
branching you can write the following:

true ^ branch("Assess Fees");

like the following:

true ^ variable1 = "Assess";

true ^ variable2 = "Fees";

true ^ branch(variable1 + " " + variable2);

You can use this principle to represent all possible four level record type specifications (Group/
Type/Subtype/Category) with the following six variables:

branch(appTypeArray[0] + "/*/*/*");
branch(appTypeArray[0] + "/" + appTypeArray[1] + "/*/*");
branch(appTypeArray[0] + "/" + appTypeArray[1] + "/" + appTypeArray[2] + "/*");
branch(appTypeArray[0] + "/*/*/" + appTypeArray[3]);
branch(appTypeArray[0] + "/" + appTypeArray[1] + "/*/" + appTypeArray[3]);
branch(appTypeString);

where the appTypeArray number in square brackets represents the level, of the four-level
record type specification, contained in the array. When an event triggers, the master script
resolves these variables based on the record type specification for the selected record.

The following provides an example resolution for an instance of the Licenses/Business/Taxi/
Application record type:

branch(Licenses/*/*/*)
branch(Licenses/Business/*/*)
branch(Licenses/Business/Taxi/*)
branch(Licenses/*/*/Application)
branch(Licenses/Business/*/Application)
branch(Licenses/Business/Taxi/Application)

Accela Automation Scripting Guide
4: Script Controls 80
The branched to Standard Choices contain the script controls for all records in the record type
hierarchy level indicated in the branch argument. For example, the script controls in the
“Licenses/*/*/*” Standard Choice apply to all license record types, including the (Licenses/
Business/Taxi/Application) record type, whereas the script controls in the “Licenses/Business/
Taxi/Application” Standard Choice only apply to instances of the Licenses/Business/Taxi/
Application record type.

The preceding example branches to the same Standard Choice, regardless of the event trigger.
To branch to a different Standard Choice for each event trigger, manually add an event
specification into the variable.

branch("<my_event>:" + appTypeArray[0] + "/*/*/*");
branch("<my_event>:" + appTypeArray[0] + "/" + appTypeArray[1] + "/*/*");
branch("<my_event>:" + appTypeArray[0] + "/" + appTypeArray[1] + "/" +
appTypeArray[2] + "/*");
branch("<my_event>:" + appTypeArray[0] + "/*/*/" + appTypeArray[3]);
branch("<my_event>:" + appTypeArray[0] + "/" + appTypeArray[1] + "/*/" +
appTypeArray[3]);
branch("<my_event>:" + appTypeString);

where <my_event> is the three to five character abbreviation that represents the event (Table
17: Scriptable Event Abbreviations). For example, you can use the ASA abbreviation to
represent the ApplicationSubmitAfter/Before event in the branch variable.

branch("ASA:" + appTypeArray[0] + "/*/*/*");
branch("ASA:" + appTypeArray[0] + "/" + appTypeArray[1] + "/*/*");
branch("ASA:" + appTypeArray[0] + "/" + appTypeArray[1] + "/" + appTypeArray[2] + "/
*");
branch("ASA:" + appTypeArray[0] + "/*/*/" + appTypeArray[3]);
branch("ASA:" + appTypeArray[0] + "/" + appTypeArray[1] + "/*/" + appTypeArray[3]);
branch("ASA:" + appTypeString);

which resolves to the following:

branch(ASA:Licenses/*/*/*)
branch(ASA:Licenses/Business/*/*)
branch(ASA:Licenses/Business/Taxi/*)
branch(ASA:Licenses/*/*/Application)
branch(ASA:Licenses/Business/*/Application)
branch(ASA:Licenses/Business/Taxi/Application)

You must create a Standard Choice with the same name as each possible evaluation outcome
of the branch argument variables. Use event acronyms and record type variables, in your
branch arguments, to ensure a standard naming convention for your branched to Standard
Choices, and to facilitate the organization and reuse of branched to script controls in the
Standard Choices for group level record types (Licenses/*/*/*). When you apply this standard
naming convention for your Standard Choices, you can use wildcard searches to return an
inventory of Standard Choices setup for a specific record type. For example:

 %Licenses/Business/Taxi/% - returns all Standard Choices for taxi business licenses across
all events

 %ASA:Licenses/Business/% - returns all Standard Choices for business licenses
application submittal

 %/Application/% - returns all standard choices for application record types.

Accela Automation Scripting Guide
4: Script Controls 81
Branching to the Same Standard Choice from Different
Events

If you branch to the same Standard Choice from different events:

 Prefix the name of the branched to Standard Choice with the letters “CMN” (common).

 Followed the prefix with the record type scope.

 Append the end of the script control with a short description of its function.

wfTask == "Final Review" && wfStatus == "Ready to Issue" ̂
branch("CMN:Permits/*/*/*:INVOICE_ALL_FEES");

Naming Inspection Result Events
The following three events, that occur after an inspection result, violate the rule that the entry
point Standard Choice (controlString value in the master script) match the event name:

 InspectionResultSubmitAfter (inspection result from AA Classic, GovXML, AMO, AW)

 V360InspectionResultSubmitAfter (inspection is result from AA)

 InspectionResultModifyAfter (inspection updated from AA - FID 8400 disabled)

 Table 17: Scriptable Event Abbreviations

Event Abbrev. Event Abbrev.

AdditionalInfoUpdateAfter/Before AIUA / AIUB InvoiceFeeAfter IFA

ApplicationConditionAddAfter ACAA LicProfLookupSubmitAfter/Before LPLSA / LPLSB

ApplicationConditionDeleteBefore ACDB LicProfUpdateAfter/Before LPUA / LPUB

ApplicationConditionUpdateAfter/Before ACUA /
ACUB

ParcelAddAfter/Before
V360ParcelAddAfter

PAA / PAB

ApplicationSpecificInfoUpdateAfter/
Before

ASIA / ASIB ParcelUpdateAfter PUA

ApplicationStatusUpdateAfter/Before ASUA /
ASUB

PaymentProcessingAfter/Before PPA / PPB

ApplicationSubmitAfter/Before ASA / ASB PaymentReceiveAfter/Before PRA / PRB

ContactAddAfter/Before CAA / CAB PaymentReceiveBefore PRB

ContactEditAfter/Before CEA / CEB RenewalInfoUpdateAfter RIUA

ContactREmoveAfter/Before CRA / CRB TimeAccountingAddAfter/Before TAAA / TAAB

ConvertToRealCapAfter CRCA VoidPaymentAfter/Before VPA / VPB

DocumentUploadAfter/Before DUA / DUB WorkflowTaskUpdateAfter/Before WTUA / WTUB

FeeAssessAfter/Before FAA / FAB

InspectionMultipleScheduleAfter/Before
InspectionScheduleAfter/Before

ISA / ISB

InspectionResultSubmitAfter/Before
InspectionResultModifyAfter/Before
V360InspectionResultSubmitAfter/Before

IRSA / IRSB

Accela Automation Scripting Guide
4: Script Controls 82
Best practice prescribes use of the same InspectionResultSubmitAfter Standard Choice for
each of these events. Update the master script variable controlString in each event’s master
script to “InspectionResultSubmitAfter”. Use the IRSA acronym to refer to this event in your
branch variable (Using Variable Branching on page 78).

Exploring an Object
When working with an object while writing scripts you can reference the Javadocs
documentation (http://community.accela.com/p/doc_interfaces.aspx) to explore the class it
belongs to including its properties and methods. Use the getClass() function to determine the
class from which EMSE instantiated an object.

You can use Script Test to create an object and use a for loop to explore the methods and
properties available to the object (Figure 24: Show all methods of an object and Figure 25:
Show all properties and their values for an object).

Figure 24: Show all methods of an object

Accela Automation Scripting Guide
4: Script Controls 83
Figure 25: Show all properties and their values for an object

84
CHAPTER 5:

ACCELA CITIZEN ACCESS PAGE
FLOW SCRIPTS
Topics:

 Understanding Accela Citizen Access Page Flow Scripts

 Using Model Objects

 Creating a Page Flow Master Script

Understanding Accela Citizen Access Page Flow
Scripts

When a citizen uses Accela Citizen Access to create an application, Accela Citizen Access
creates a temporary record in the Accela Automation database and Accela Citizen Access
stores application information in a capModel object. Accela Citizen Access stores capModel
object data in memory for the duration of a user’s session.

The capModel object contains all the details about the application. As the user progresses
through the forms on each Accela Citizen Access page, Accela Citizen Access updates the
capModel object data in memory. Upon completion and submittal of the application, Accela
Citizen Access passes the capModel object data to Accela Automation and Accela Automation
creates a new record in the Accela Automation database.

You can use Expression Builder of page flow scripts to apply advanced business rules for
Accela Citizen Access applications. If you need to populate data on an Accela Citizen Access
form, try to use Expression Builder. If you need to populate data not displayed in Accela Citizen
Access, use page flow scripts.

Unlike Accela Automation scripts, page flow scripts associate with events from the Accela
Citizen Access Page Flow Admin tool. The user triggers page flow scripts when they navigate
through different Accela Citizen Access pages. You can associate a script to the following three
page flow events:

 Onload – triggers when the page loads

 Before – triggers when the user clicks the continue button, it can prevent the user from
progressing if data validation fails

 After – triggers when the user clicks the continue button, can implement automation in the
application process

Accela Automation master scripts interact with record data that Accela Automation stores in the
database. The Accela Automation master scripts do not work on Accela Citizen Access page
flow data.

Accela Automation Scripting Guide
5: Accela Citizen Access Page Flow Scripts 85
For example, the editAppSpecific master script function updates an ASI field on the database
record, but does not update the Accela Citizen Access capModel object data stored in memory.
The Accela Citizen Access capModel object data overwrites the ASI field on the database
record when Accela Citizen Access submits a completed application.

Using Model Objects
The master script functions use get and set functions, with the “cap” variable, to retrieve and
update information about the current record. Table 18: Retrieving the capModel Object Value
shows how to get information, from the application specific information table, from a script
control.

Table 19: Updating the capModel Object Value shows how to update information, from the
application specific information table, from a script control.

Table 20: Updating the capModel Object in Accela Citizen Access shows how to pass capModel
updates to Accela Citizen Access at the end of your script.

Creating a Page Flow Master Script
You must customize each page flow script to the associated page flow.

To create a custom page flow script

1. Make a copy of the universal script.

2. Create a new name for the copy that accurately identities. For example, ACA TN ASI
Before, where:

• ACA – indicates where the script runs

• TN – is the page flow

• ASI – is the page flow step

• Before – is the event type (eg. Onload, After, Before)

3. Open the script in a text editor.

 Table 18: Retrieving the capModel Object Value

Value Description

01 true ^ asit = cap.getAppSpecificTableGroupModel ();

 Table 19: Updating the capModel Object Value

Value Description

01 true ^ cap.setAppSpecificTableGroupModel(asit) ;

 Table 20: Updating the capModel Object in Accela Citizen Access

Value Description

01 true ^ aa.env.setValue("CapModel",cap) ;

Accela Automation Scripting Guide
5: Accela Citizen Access Page Flow Scripts 86
4. Update the controlString variable to match the name (Figure 26: Updating the
controlString).

Figure 26: Updating the controlString

5. Install the script (Working with Scripts on page 52). Save the script with the same name as
the controlString variable set in the previous step.

6. Log in to Accela Citizen Access Admin.

7. Navigate to the proper page flow and page flow step.

8. Associate the newly added script to the proper event (Figure 27: Associating a script to an
Accela Citizen Access Page Flow event).

Figure 27: Associating a script to an Accela Citizen Access Page Flow event

9. Create the standard choice entry point with the same name as the controlString variable.

10. Write appropriate script controls that interact with information stored in memory for the
capModel object.

Join the conversation in the Accela Community for additional articles and discussions about
Accela Citizen Access Page Flows: http://community.accela.com/search/
SearchResults.aspx?q=aca+page+flows

87
CHAPTER 6:

SCRIPT TESTING
Topics

 Understanding the Script Test Tool

 Testing an Event and Script Association

 Running a Script Test

 Troubleshooting

Understanding the Script Test Tool
Accela Automation provides the Script Test tool to test EMSE scripts. The Script Text tool
simulates script execution by running scripts and displaying the resulting output. However,
scripts run in the Script Text tool do not change any values in Accela Automation, Accela Citizen
Access, or the Accela Automation database.

You can use the Script Test tool to:

 Develop and test batch scripts.

 Develop and test custom functions.

 Troubleshoot and debug EMSE scripts.

To access the Script Test tool

1. From the Classic Admin portlet, click Admin Tools > Events > Script Test.

Accela Automation displays the Script Test interface.

Accela Automation Scripting Guide
6: Script Testing 88
Figure 28: Script Test

Table 21: Script Test Field Definitions provides information on the fields in the Script Test
interface.

Accela Automation Scripting Guide
6: Script Testing 89
 Table 21: Script Test Field Definitions

Script Transaction A drop-down list that provides two options:

Always Rollback
The script outputs results to the Script Output window, but
does not commit actions in Accela Automation. For
example, if the script updates a workflow task for each
license that meets certain criteria, the Script Output window
indicates an updated workflow task while the status of the
record in Accela Automation remains unchanged.

The Always Rollback selection does allow scripts to affect
autonumbers for Accela Automation objects. For example, if
the script assesses and invoices a fee item, the sequence
numbers for fees and invoices increments even though
Accela Automation did not create the fee as a part of the
script test.

Commit if Successful
The script commits requested actions in Accela Automation
and displays a result message in the Script Output window.

Script Initializer Contains initialization requirements for testing the script. For
example, when testing a batch script, you can set batch
script parameter values, like specifying an email address, to
set the scope of the batch script to a record type
designation. You can also set script initialization values in
Script Text.

Script Text Contains the contents of the script. In general, you should
create scripts in a text editor, then copy and paste them into
the Script Test section.

Script Output Contains the returned output upon the completion of the
script execution. The script only displays text strings it
sends to the aa.print method (“This should be sent to the
Script Output window”). If your script contains the
logMessage or logDebug function, make sure you send the
variable that contains the debug or message output to the
aa.print method (Using the aa.print Function on page 98).

Note: Scripts that run longer than the specified EMSE time-out do not
exit as gracefully as they do from a batch job or a set script
execution.

Script errors display in the next encountered error pop-up
window as well as the Script Output section.

The first couple lines of an error message often indicate an
undefined variable or a non-existent function.

The error message typically the line in the script where the error
occurred.

Accela Automation Scripting Guide
6: Script Testing 90
Testing an Event and Script Association

Topics

 Associating the script to an event

 Testing the event

In this scenario we install a test script and we associate the test script with an event. When the
event triggers, the script displays the “EVENT TEST” pop-up message.

You can associate the test script with any event. When the “EVENT TEST” message appears in
a pop-up window, you know the event that triggered the test script.

During your script development, create the association between the test script and the event
you want to script first, then replace the test script with your developed script. This way, you
know that you associated the developed script with the correct event.

To create the test script

1. From the Classic Admin portlet, click Admin Tools > Events > Scripts.

2. Click Submit to return a list of existing scripts.

3. Click Add.

4. Enter the following two script lines in the Script Content section:

aa.env.setValue("ScriptReturnCode","1");

aa.env.setValue("ScriptReturnMessage", "EVENT TEST");

5. Enter the name “EVENT_TEST” in the Script Code and Script Title sections.

6. Click Add.

Associating the script to an event

To associate an event to the test script

1. From the Classic Admin portlet, click Admin Tools > Events > Events.

2. Click Submit to return a list of existing events.

3. If required, add a new event.

a. Click Add.

b. Select the event name from the Events drop-down list, then click Add.

4. Select an existing event by clicking on the red dot to the left of its name.

5. From the Event Detail screen select the script “EVENT_TEST” from the Script Name drop-
down list.

6. Click Save.

Accela Automation Scripting Guide
6: Script Testing 91
Testing the event
Test the event to script association by triggering the event with a test case. For example, to test
the “ApplicationSubmitAfter” event, create a new record of any type and click Submit, he
“EVENT TEST” message appears in a pop-up window.

To disassociate the script from the event

1. From the Classic Admin portlet, click Admin Tools > Events > Events.

2. Click Submit to return a list of existing events.

3. Select the event by clicking on the red dot to the left of its name.

4. From the Script Name drop-down list, scroll to the top of the list and select the blank entry.

5. Click Save.

To delete the event

1. From the Classic Admin portlet, click Admin Tools > Events > Events.

2. Click Submit to return a list of existing events.

3. Select the event by clicking on the red dot to the left of its name.

4. Click Delete to disable the event.

Figure 29: Script and Event Detail pages

Running a Script Test

Topics

 Using ScriptTester

Incorrect scripts can permanently alter or erase data on your system. Always test your scripts
before you implement them.

Accela Automation Scripting Guide
6: Script Testing 92
Use the Accela Automation script test utility to run your script in a test situation and to view the
effects of the scripts or any errors that it generates.

When you run a script in the script test utility, Accela Automation runs the script and changes
your system accordingly. You configure runtime parameters for the script test tool that instructs
Accela Automation whether to rollback all changes resulting from the script or commit the
changes resulting from the script.

Using ScriptTester
Accela Automation provides the ScriptTester.js master script file for you to test script controls
without triggering an event from the user interface. You can copy and past the content of the
ScriptTester.js file into the Script Test tool.

ScriptTester is a file that allows you to copy and paste its contents into Figure 28: Script Test on
page 88 and test script controls without having to trigger an event from the user interface.

To use the Script Test tool

1. Copy and paste the ScriptTester.js contents into the Script Text area of the Script Test tool.

2. Edit the myCapId variable to the tested altId.

3. Edit the myUserId to the tested user.

4. Update controlString to the standard choice entry point.

The ScriptTester.js master script inherits the native functionality of the Script Test tool to Always
Rollback or Commit if Successful. You can use Always Rollback to repeatedly test a script and
not commit the results to the database. You can select Commit if Successful after you
troubleshoot your script and want to update the database.

Note: The control string can be a standard choice entry point for the
event (eg. ApplicationSubmitAfter) to test an events standard
choices or a specific standard choice to test specific functionality

Note: Always Rollback is the default.

Accela Automation Scripting Guide
6: Script Testing 93
Figure 30: ScriptTester in Script Test

Troubleshooting

Topics

 Launching the EMSE Debug Tool

 Understanding the Script Output Window

 Setting the showDebug Script Control

 Using the aa.print Function

 Using Biz Server Logs

Launching the EMSE Debug Tool
Accela Automation provides an EMSE debug tool so that users can debug scripts conveniently.
Follow the instructions to launch the EMSE debug tool.

1. Log in to Accela Automation Classic.

2. Navigate to Admin Tools > Events > Script Test.

3. Enter // @Open sesame in the Script Text field.

Accela Automation Scripting Guide
6: Script Testing 94
4. Click the Submit button.

The Rhino JavaScript Debugger appears on Accela Automation Application Server.

5. Debug the scripts that populate the JavaScript Console of the debug tool.

Several kinds of scripts, such as batch job scripts and scripts that EMSE events trigger, can
populate the debug tool. For example, when submit an application, you trigger the

Note: The EMSE debug tool only appears on the Accela Automation
Application Server, not on any other computers where you can
log in to Accela Automation Classic.

Accela Automation Scripting Guide
6: Script Testing 95
ApplicationSubmitAfter event and the associated script automatically populates the
debug tool.The debugger window looks like the following.

Understanding the Script Output Window
You can use the script output pop-up window to provide additional details about an event and
associated script to help locate problems or areas in the script on which you want to focus.

The showDebug variable controls script output according to the following settings:

 0 or false – no output to the screen or server logs

 1 or true – generates screen output only

 2 – outputs to the server log only

 3 – outputs to the screen and the server log

Accela Automation Scripting Guide
6: Script Testing 96
Figure 31: Script Output Window

The script output window displays the script flow, which includes evaluated criteria and
executed actions (yellow section in Figure 32: Script Output with Action).

An action only appears in the script output window if the criterion allows it. To locate an action in
the script output window, use your browser to search for the word Action.

Figure 32: Script Output with Action

The script tester writes more and different information to the server.log file than the script output
window. If the script output window does not provide enough information to troubleshoot your
problem, check the server.log file.

Accela Automation Scripting Guide
6: Script Testing 97
Figure 33: Script Output Error Message shows an error message resulting from a misspelled
function, but it does not show where it occurred. Figure 34: Server Logs Error Detail shows the
server.log file with the debug output. The server.log file shows the error and where in the
standard choice the script stopped executing.

Figure 33: Script Output Error Message

Figure 34: Server Logs Error Detail

If you set the showDebug variable correctly and the script output window does not display,
check for the following two situations:

 an error prevents the display

 a script control later in the flow sets the showDebug variable to false.

Setting the showDebug Script Control
You can set the showDebug script control, with true as the criteria (Table 22: Common
showDebug Implementation). In this case, the script output window displays to any user that
triggers the associated event, which can confuse users not familiar with the testing process and
EMSE.

To limit the showDebug function to a specific user, add a criteria to specify that the showDebug
script control only applies to a specific user (Table 23: showDebug for Specified User).

Note: In order for the script output window to display showDebug must
equal true, 1, 2, or 3 when the master script completes
evaluating all the script controls.

 Table 22: Common showDebug Implementation

Value Description

10 true ^ showDebug = 3;

20 // several more lines of script controls

Accela Automation Scripting Guide
6: Script Testing 98
Using the aa.print Function
The aa.print function outputs text to the Script Output window. A script test or a script control
can call the aa.print function. When called from a script control, the aa.print function output
displays at the bottom of the script output window (Figure 35: aa.print()).

Figure 35: aa.print()

Using Biz Server Logs
You can write your script results to the server.log file on the Accela Automation Biz server.

To write script results to the Biz server

Set the DEBUG Standard Choice with the following settings (Figure 36: DEBUG standard
choice):

 Table 23: showDebug for Specified User

Value Description

10 currentUserID == "ADMIN" ^ showDebug = 3; //replace ADMIN with your username

20 // several more lines of script controls

Standard Choice Item
Name

DEBUG

Status: Enable

Type: System Switch

Standard Choice
Value

ENABLE_DEBUG

Value Desc YES

Accela Automation Scripting Guide
6: Script Testing 99
Figure 36: DEBUG standard choice

You can locate the log file on the server running the Accela Automation Biz server in the
following location:

\\Biz_Server\C$\Accela\av.biz\log\server.log

where C$ represents the root drive specification for the Accela Automation installation.

The server.log file represents the log for the current day. Each day at 12:00AM server time the
server appends the date to the name of the previous day’s log file. The daily history of log files
remains on the server until an administrator decides to purge historical log files to free up space
on the server hard disk.

If you do not have access to the server, you can request the server administrator deploy a log
monitor. See the Accela Community for details of deploying a log monitor: http://
community.accela.com/accela_automation/m/aascripts/384.aspx

A log viewing application such as BareTailPro (http://www.baremetalsoft.com/baretailpro/
index.php) can enhance the log review process and speed up research and troubleshooting
with the biz server logs.

To write specific messages to the biz server log, use the aa.debug function. The
aa.debug(string,string) function writes the strings captured in the function call to the server.log
file (Figure 37: aa.debug(string,string)).

Figure 37: aa.debug(string,string)

100
CHAPTER 7:

ACCELA AUTOMATION
OBJECT MODEL
This chapter provides a tutorial-like discussion of the Accela Automation object model. The
functions that the Accela Automation master scripts provide reference these objects (Appendix
A: Master Script Function List on page 114).

Topics:

 Discussing the Accela Automation Object Model

 Understanding Script Return Values

Discussing the Accela Automation Object Model
The Accela Automation object model comprises a hierarchy of objects that organizes access to
different parts of Accela Automaton. At the root of the tree is the aa object.

Figure 38: Object Model shows that the aa object is at the root, with a few of the objects
underneath the aa object listed. Each of the objects listed beneath the aa object is a property of
the aa object.

Figure 38: Object Model

From earlier examples, we know that the aa object also has methods. Figure 39: Object Model
Root Methods shows two of the methods of the aa object. You can find documentation for all the
methods of the aa object in the EMSE Javadocs.

Accela Automation Scripting Guide
7: Accela Automation Object Model 101
Figure 39: Object Model Root Methods

Notice that each of the objects under the aa object has a name that corresponds to a piece of
Accela Automation. Each of these objects beneath aa also provides methods for interacting
with Accela Automation (Figure 40: Object Model Object Methods).

Figure 40: Object Model Object Methods

In this diagram, we can see that the inspection object has some methods that we can use. If we
look at the documentation for the getInspections method we find the method definition:

getInspections(CapID capID) returns Result

The method syntax tells us that the name of the method is getInspections and that this method
takes one parameter. Two words describe each parameter. The first word tells us the kind of
parameter. The second tells us the parameter named. The name helps us to understand how to
use the parameter inside the method. The type is “String”, “Number”, or perhaps the name of an
object. In the case of this parameter the type is CapID. We can look at the documentation for
the method’s parameters and see:

capID – The CapID for the record from which you want to get the array of inspections.

Accela Automation Scripting Guide
7: Accela Automation Object Model 102
We can also look up the CapID object, and read its description to find out more about it. So now,
we know that we need to pass in a CapID object that identifies the record for which we want to
get an array of inspections.

If we look at the end of the method definition we see “returns Result”. This last part of the
method tells us that, when we call this method, we get back a result object. The result object
provides an indicator of whether the method succeeded, an error type and error message if the
method failed, and the output if the method succeeded.

The getSuccess method returns a Boolean value that is true if the method succeeded and false
if it did not. If the getSuccess method returns false you can check the getErrorType and
getErrorMessage methods return values to retrieve some information about the error. The
getSuccess method returns true you can retrieve the actual output of the method by calling
getOutput.

When we look at the documentation for the getInspections method we can see that the
getOutput method of the result object returned by the getInspections method returns
InspectionItem. The double brackets [] tell us that it is an array of InspectionItem objects and
not just one InspectionItem object.

Return Value:

Result – Object, see description in this document. The getOutput method of the result object
returns InspectionItem[], an array of InspectionItem object. See InspectionItem object
description in this document.

At this point, we still have three questions. First, how do we create a CapID object that identifies
the record we want. Second, how do we call the method? Third, how do we work with the array
of InspectionItem objects returned to us by calling this method?

For the first question, we notice that there is a cap object beneath the aa object. We go to the
reference documentation and see that the cap object has this method:

getCapID(String id1, String id2, String id3) returns Result

Return Value:

Result - Object, see description in this document. The getOutput method of the result object
returns a CapID object. The getErrorMessage method returns CapNotFound if the method does
not find a record that matches the three five digit ids.

This method returns a result object that has the CapID object we need. The method takes three
strings that are the three ids for the permit. You can set up your Accela Automation instance to
use a custom id, rather than a fifteen digit id, and a method of the cap object allows you to
retrieve a CapID object using a custom id. Now we need to know how to call this method. Here
is how:

myResult = aa.cap.getCapID(“01BLD”, “00000”, “00027”);
if(myResult.getSuccess()) {
 myCap = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}

We can see from this line that we access the cap object as a property of the aa object and then
call the getCapID method of the cap object. We pass the three strings, that identify the record

Accela Automation Scripting Guide
7: Accela Automation Object Model 103
we want, to the method . The method returns the result object, which we use to see if the
getCapID method succeeded. The retrieved CapID object, by calling the getOutput method of
the result object, identifies our record and we assign that object as the value of the myCap
variable.

Now we have the value we need as the parameter to pass in to the getInspections method. We
can see, from the example of calling a method of the cap object, how to call the getInspections
method of the inspection object. We know that we get back an array object from the
getInspections method call, so now we know how to write a two line script that retrieves an
array of inspections for a particular record. Here is our script so far:

myResult = aa.cap.getCapID(“01BLD”, “00000”, “00027”);
if(myResult.getSuccess()) {
 myCap = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
myResult = aa.inspection.getInspections(myCap);

if(myResult.getSuccess()) {
 myInspections = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}

This script does not display any output yet. At this point, we should note two things. First, use a
record id that exists in the Accela Automation instance for which you are writing scripts. Second,
use a record that has scheduled, resulted, or cancelled inspections.

What happens if you choose a record that does not exists? If the method does not find a record
that matches the id, the result object’s getSuccess method returns false, and you need to check
the error type and error message.

What happens if the record does not include any scheduled, resulted, or cancelled inspections?
You get back a zero length array that means there are no inspections for the record you
selected. We come back to these possibilities a bit later, but for now let us assume that we have
the right record id, and that the record includes inspections.

Now we need to do something with the array of InspectionItem objects we got back from calling
the getInspections. What can we do? Well, let us start by trying to print out some information
about the inspections scheduled. We want to print out a few important pieces of information
about each inspection. We go to each element in the array and call some methods on the object
stored at that position. This example reminds us of the example use of a ‘while’ loop. Here is the
example again for your review:

myArray = new Array();
myArray[0] = “Oranges”;
myArray[1] = “Bagels”;
myArray[2] = “Spinach”;
i=0;
while(i < myArray.length) {
 aa.print(myArray[i]);

Accela Automation Scripting Guide
7: Accela Automation Object Model 104
 i = i + 1;
}

This example approximates what we need. We have an array and we want to loop over its
elements. So lets try adding a rough version of this to our script:

myResult = aa.cap.getCapID(“01BLD”, “00000”, “00027”);
if(myResult.getSuccess()) {
 myCap = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
myResult = aa.inspection.getInspections(myCap);

if(myResult.getSuccess()) {
 myInspections = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
i=0;
while(i < myInspections.length) {

 // At this point we need to get the inspection and do
something with it to print.

 i = i + 1;
}

Now we have added five more lines to our script that execute a while loop one time for each
element in the array. If we have three items in our array, the loop counter has the values 0, 1,
and 2. When the loop counter reaches three, the loop stops repeating. Inside the loop, we have
a comment as a placeholder for a print function.

Inside the loop, we retrieve the InspectionItem object from the array, that is at the position
specified by the loop counter, and we use that object to print out the information. Add the line to
retrieve the object:

myResult = aa.cap.getCapID(“01BLD”, “00000”, “00027”);
if(myResult.getSuccess()) {
 myCap = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
myResult = aa.inspection.getInspections(myCap);
if(myResult.getSuccess()) {
 myInspections = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
i=0;

Accela Automation Scripting Guide
7: Accela Automation Object Model 105
while(i < myInspections.length) {
 theItem = myInspections[i];

 // At this point we need to use the object to print some
stuff.

 i = i + 1;
}

After adding a line to the beginning of the loop we now have a variable that contains the
InspectionItem object at the current position in the array. Now we just use that object to print out
the inspection id number, type, and status. Here is the script:

myResult = aa.cap.getCapID(“01BLD”, “00000”, “00027”);
if(myResult.getSuccess()) {
 myCap = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
myResult = aa.inspection.getInspections(myCap);
if(myResult.getSuccess()) {
 myInspections = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
i=0;
while(i < myInspections.length) {
 theItem = myInspections[i];
 aa.print(theItem.getIdNumber());
 aa.print(theItem.getInspectionType());
 aa.print(theItem.getInspectionStatus() + “\n”);
 i = i + 1;
}

If you run this script with the right record id you receive an output that, depending on the
inspections for the record and their status, looks something like this:

4238

Trenches

Scheduled

4257

Reinforcing

Approved

4293

Foundation Wall

Approved

Now we have a useful script that retrieves some important information about a record. In our
script we used three methods of the InspectionItem object: getIdNumber, getInspectionType,
and getInspectionStatus. These methods do not take any arguments because their purpose is
only to return information about the inspection to your script.

Accela Automation Scripting Guide
7: Accela Automation Object Model 106
The tenth line of the script shows that we added the special character “\n” at the end of the
value that the getInspection status method returned and passed the resulting string to the print
method. This special character added an extra blank line in between each inspection’s printed
values.

Up until this point, we have always used the print method to produce output from our script that
we can see, but many of the scripts that you write for Accela Automation do not produce output
in this way. You may want to modify a record’s workflow or automatically assess a fee when you
schedule a new inspection. In other words, the output of your script may modify some data in
Accela Automation.

As an example, we are going to check for a problem with the statuses of the inspections of our
record, and if a problem exists, we are going to create a smart notice to let staff know. Let us
suppose that we do not want to approve a Foundation Wall inspection before there is an
approved Trenches inspection. If this scenario happens we want to create a smart notice that
informs staff that the record with the record id we were checking has this problem.

So how do we approach this scenario? Well, first we need to know if there is an approved
Foundation Wall inspection. If there is, then we need to know if there is an approved Trenches
inspection. We already have a script that loops over all the inspections for a record. We can
start from there, but instead of printing out information about the inspection, we want to see if
the inspection is an approved Foundation Wall inspection. Let us add this check to the script:

myResult = aa.cap.getCapID(“01BLD”, “00000”, “00027”);
if(myResult.getSuccess()) {
 myCap = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
myResult = aa.inspection.getInspections(myCap);
if(myResult.getSuccess()) {
 myInspections = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
i=0;
while(i < myInspections.length) {
 theItem = myInspections[i];
 if(theItem.getInspectionType() == “Foundation Wall” &&
 theItem.getInspectionStatus() == “Approved”) {

 //Check to see if there is an approved Trenches
inspection.

 } i = i + 1;
}

When this script executes let us suppose that it finds an inspection that is a Foundation Wall
inspection with a status of Approved. When this scenario happens we need to check to see if
there is an approved Trenches inspection.

The check for a Trenches inspection requires that we use a second loop inside our main loop,
but we can simplify things by using a function. Let us add a function that checks to see if there is

Accela Automation Scripting Guide
7: Accela Automation Object Model 107
a Trenches inspection that is Approved and a condition that uses our new function to do the
checking:

Function
checkForApprovedTrenchesInspection(inspectionItemArray) {
 j = 0;
 while(j < myInspections.length) {
 currentInspection = myInspections[j];
 if(currentInspection.getInspectionType() == “Trenches”
&&
 currentInspection.getInspectionStatus() == “Approved”) {
 return true;
 }
 j = j + 1;
 }
 return false;
}
myResult = aa.cap.getCapID(“01BLD”, “00000”, “00027”);
if(myResult.getSuccess()) {
 myCap = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
myResult = aa.inspection.getInspections(myCap);
if(myResult.getSuccess()) {
 myInspections = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
i=0;
while(i < myInspections.length) {
 theItem = myInspections[i];
 if(theItem.getInspectionType() == “Foundation Wall” &&
 theItem.getInspectionStatus() == “Approved”) {
if(checkForApprovedTrenchesInspection(myInspections) ==
false) {

 // If we reach this line we have confirmed that the
record has a problem.

 }
 }
 i = i + 1;
}

Our function looks very similar to the previously written part of our script. We have placed the
function at the top of the script, although you could also put it at the bottom as a matter of
preference. We have tried to give our function a meaningful name that tells us what it does. We
could also put a comment before the function to explain to other people reading our script what
the function does.

Accela Automation Scripting Guide
7: Accela Automation Object Model 108
The function accepts one parameter, an inspection array. We named the parameter
inspectionItemArray to remind ourselves of what type of value we need to pass in when calling
the function. The function loops over the array passed in and checks to see if each of the
inspections meets the condition that it is a Trenches inspection with Approved status. As soon
as the function finds an inspection it returns the value true.

When a return statement appears in the middle of a function like this, the function stops what it
is doing and immediately returns the specified value; it does not wait for the loop to finish. If the
loop goes all the way through the inspections for the record and does not find a matching
inspection, the loop exits and the next command after the loop executes. The command after
the loop is “return false”, so if the function gets through the loop without finding a matching
inspection, the function returns false.

The condition we added to the middle of the previously written loop uses the new function to
check for an Approved Trenches inspection. If the function does not find an inspection, we know
that the record has inspection statuses inconsistent with how we want to run our agency and we
need to do something.

Let us suppose that the inspection matches the conditions we have set up so far. In this case,
we need to replace the comment line in our script with a command to insert a smart notice with
the information that we need. The smartNotice object has this method:

addNotice(String id1, String id2, String id3, String activityType, String activityComment) returns
null

So when we confirm that the record has the problem, we need to call this method to create the
new smart notice. After adding this method call to the script here is what we get:

function
checkForApprovedTrenchesInspection(inspectionItemArray) {
 j = 0;
 while(j < myInspections.length) {
 currentInspection = myInspections[j];
 if(currentInspection.getInspectionType() == “Trenches”
&&
 currentInspection.getInspectionStatus() == “Approved”) {
 return true;
 }
 j = j + 1;
 }
 return false;
}
myResult = aa.cap.getCapID(“01BLD”, “00000”, “00027”);
if(myResult.getSuccess()) {
 myCap = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
myResult = aa.inspection.getInspections(myCap);
if(myResult.getSuccess()) {
 myInspections = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());

Accela Automation Scripting Guide
7: Accela Automation Object Model 109
 aa.abortScript();
}
i=0;
while(i < myInspections.length) {
 theItem = myInspections[i];
 if(theItem.getInspectionType() == “Foundation Wall” &&
 theItem.getInspectionStatus() == “Approved”) {
if(checkForApprovedTrenchesInspection(myInspections) ==
false) {
 aa.smartNotice.addNotice(“01BLD”, “00000”, “00027”,
“Inspection Problem”,
 “Application 01BLD 00000 00027 has an approved
Foundation Wall inspection” +
 “but no approved Trenches inspection.”);
 }
 }
 i = i + 1;
}

So now, we have a script that checks a record to see if it meets a certain criteria, and takes
action by inserting a new smart notice if the record does meet the criteria.

The list of Accela Automation events includes an event called InspectionResultSubmitAfter that
is a good place to run our script and check the application. However, as our current script only
checks the record 01BLD-00000-00027. We need to modify our script to that it uses the input
parameters from the event to dynamically determine which application to check.

The documentation for the InspectionResultSubmitAfter event shows three parameters that can
tell us which record to check:

IN: PermitId1
IN: PermitId2
IN: PermitId3

We need to use the getValue method of the env object to retrieve parameters passed in to our
script from an event. We add the following three lines at the top of our script to retrieve the
permit id values:

myId1 = aa.env.getValue(“PermitId1”);
myId2 = aa.env.getValue(“PermitId2”);
myId3 = aa.env.getValue(“PermitId3”);

After adding these lines at the beginning of the script, we use the three values we retrieved in
place of the unchanging strings we passed as parameters to getCapID. We also use these
values to dynamically create the message for the smart notice. Here is the script:

function
checkForApprovedTrenchesInspection(inspectionItemArray) {
 j = 0;
 while(j < myInspections.length) {
 currentInspection = myInspections[j];
 if(currentInspection.getInspectionType() == “Trenches”
&&
 currentInspection.getInspectionStatus() == “Approved”) {
 return true;

Accela Automation Scripting Guide
7: Accela Automation Object Model 110
 }
 j = j + 1;
 }
 return false;
}
myId1 = aa.env.getValue(“PermitId1”);
myId2 = aa.env.getValue(“PermitId2”);
myId3 = aa.env.getValue(“PermitId3”);
myResult = aa.cap.getCapID(myId1, myId2, myId3);
if(myResult.getSuccess()) {
 myCap = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
myResult = aa.inspection.getInspections(myCap);
if(myResult.getSuccess()) {
 myInspections = myResult.getOutput();
} else {
 aa.print(myResult.getErrorMessage());
 aa.abortScript();
}
i=0;
while(i < myInspections.length) {
 theItem = myInspections[i];
 if(theItem.getInspectionType() == “Foundation Wall” &&
 theItem.getInspectionStatus() == “Approved”) {
if(checkForApprovedTrenchesInspection(myInspections) ==
false) {
 aa.smartNotice.addNotice(myId1, myId2, myId3,
“Inspection Problem”,
 “Application “ + myId1 + “ “ + myId2 + “ “ + myId3 +
 ” has an approved Foundation Wall inspection“ +
 “ but no approved Trenches inspection.”);
 }
 }
 i = i + 1;
}

You can now associate the script with the InspectionResultSubmitAfter event. However, there is
one more thing to do.

Currently, we use aa.print to send messages to the user when something goes wrong. While
aa.print works with the Script Test page, use the environment object to send messages back to
the user when you attach the script to an event. Here is the final script with the aa.print
statements, replaced with the appropriate statements for informing the user with a message:

function
checkForApprovedTrenchesInspection(inspectionItemArray) {
 j = 0;
 while(j < myInspections.length) {
 currentInspection = myInspections[j];

Accela Automation Scripting Guide
7: Accela Automation Object Model 111
 if(currentInspection.getInspectionType() == “Trenches”
&&
 currentInspection.getInspectionStatus() == “Approved”) {
 return true;
 }
 j = j + 1;
 }
 return false;
}
myId1 = aa.env.getValue(“PermitId1”);
myId2 = aa.env.getValue(“PermitId2”);
myId3 = aa.env.getValue(“PermitId3”);
myResult = aa.cap.getCapID(myId1, myId2, myId3);
if(myResult.getSuccess()) {
 myCap = myResult.getOutput();
} else {
 aa.env.setValue(“ScriptReturnMessage”,
myResult.getErrorMessage());
 aa.abortScript();
}
myResult = aa.inspection.getInspections(myCap);
if(myResult.getSuccess()) {
 myInspections = myResult.getOutput();
} else {
 aa.env.setValue(“”ScriptReturnMessage”,
myResult.getErrorMessage());
 aa.abortScript();
}
i=0;
while(i < myInspections.length) {
 theItem = myInspections[i];
 if(theItem.getInspectionType() == “Foundation Wall” &&
 theItem.getInspectionStatus() == “Approved”) {
if(checkForApprovedTrenchesInspection(myInspections) ==
false) {
 aa.smartNotice.addNotice(myId1, myId2, myId3,
“Inspection Problem”,
 “Application “ + myId1 + “ “ + myId2 + “ “ + myId3 +
 ” has an approved Foundation Wall inspection“ +
 “ but no approved Trenches inspection.”);
 }
 }
 i = i + 1;
}

Before you deploy a script like this to an environment where real users use Accela Automation,
test the script thoroughly to make sure that it works as expected. Use a test environment where
any mistakes do not affect your production data.

To test a script, go in to the Event Manager pages and associate the script with the event, then
try to exercise different parts of the script. For example, try doing several different kinds of
inspection results that do not insert a smart notice. Then try some inspection results that do

Accela Automation Scripting Guide
7: Accela Automation Object Model 112
insert a smart notice. With proper testing you can be much more sure that the script works,
before you deploy it in your production environment.

Understanding Script Return Values
When execution of a script completes, the script sends the values stored in the scripts
environment object back to Accela Automation. Some events have documented special values
in the environment, which you can set to send information to the Accela Automation interface.
The event documentation provides the names for these values and the expected input from
your script.

In addition to the environment return values related specifically to the event there are some
return values that are always available for you to set. You do not need to provide these
parameters a value unless you want something specific to happen.

Note that there are both before and after events in Accela Automation. An event with a name
that ends in “Before” means the event takes place before the user action updates the database.
An event with a name that ends in “After” means the event takes place after the user action
updates the database.

Because script return values can stop Accela Automation from continuing a user action, if you
associate a script with an after event, the user action completes before the script has a chance
to stop it. If you want to be able to cancel a user action, use a before event.

Topics:

 ScriptReturnCode

 ScriptReturnMessage

 ScriptReturnRedirection

ScriptReturnCode
This return value is a numeric value (Table 24: ScriptReturnCode Values) which allows the
script to choose one of several actions to occur after the script finishes.

 Table 24: ScriptReturnCode Values

Value Action

0 Proceed as normal.

1 Request Accela Automation to stop the user action and return to the
previous page.

2 Request Accela Automation to stop the user action and return to the
main menu.

3 Request Accela Automation to stop the user action and proceed to the
page designated by the ScriptReturnRedirection value.

4 Request Accela Automation to stop the user action and log user out.

Accela Automation Scripting Guide
7: Accela Automation Object Model 113
ScriptReturnMessage
When this return parameter has a value, it displays to the user as a message when the Accela
Automation user request, of which the script is a part, completes. You can use this function to
send informative messages, or explanations of why an error occurred.

You can use HTML characters to format the message. The text of the returned message
displays to the user in a popup window.

When you set the ScriptReturnCode parameter to something other than zero, you can set a
value for ScriptReturnMessage to explain to the user why they are redirected from the normal
flow of the Accela Automation interface.

ScriptReturnRedirection
When you set the ScriptReturnCode parameter to three, and you set a value for
ScriptReturnCode, the script sets the URL of the browser to the value of the
ScriptReturnRedirection parameter.

114
APPENDIX A:

MASTER SCRIPT
FUNCTION LIST
Conventions
 Unless otherwise stated, all function names and parameter values are case sensitive.

 Enter function parameters in the order listed.

 For the string data type, enclose the parameter value in double-quotes.

 Subscripts 1 and n in parameter names (e.g., wfTask1 … wfTaskn) indicate that you can add
between one and any number of such parameters, each in double-quotes and separated by
commas.

 This reference shows Boolean values as true or false.

 This reference does not document internal functions in the master script files.

CapIDModel Type
The master script functions use the CapIDModel type for the capID parameter. Chapter 7:
Accela Automation Object Model on page 100 provides additional details on the capID
parameter. The EMSE Javadocs contain details on the CapIDModel class. The
com.accela.aa.aamain.cap package in the EMSE Javadocs contains the CapIDModel class and
defines the constructor for this class as follows.

Note: The name of a function parameter is for descriptive purposes
only. The name of the function parameters in this chapter can
differ from the name of the corresponding function parameter in
the UniversalMasterScript file.

Parameter Type

serviceProviderCode string

ID1 string

ID2 string

ID3 string

customID string

trackingID long

Accela Automation Scripting Guide
A: Master Script Function List 115
activateTask
Makes workflow task wfstr active and not completed, so that users can edit wfstr.

Version

1.3

Parameters

Notes

If workflow uses sub-processes that contains duplicate workflow task names, use parameter
wfRelationSeqId to specify the process or subprocess whose wfstr you want to activate. You
can find the value of wfRelationSeqId by querying workflow tables (e.g.
GPROCESS.RELATION_SEQ_ID)

addAddressCondition
Adds a condition to the specified reference address. If a standard condition is associated with
an ASI group (condition template), the method adds the condition with the template fields and
tables. You can call the method to add duplicate conditions to a record.

Version

2.0

Parameters

Notes

If addNum is null, the function adds the condition to all reference addresses associated with the
current record.

Parameter Type Description

wfstr string Name of task to activate.

wfRelationSeqId
(optional)

number: long Relation sequence ID of workflow process to which wfstr
belongs.

Parameter Type Description

addNum long Reference address number or null.

cType string Type of condition (from admin->condition->condition type).

cStatus string Status (from admin->condition->condition status).

cDesc string Description of the condition.

cComment string Condition comment.

cImpact string Must be Lock, Hold, Notice, Required, or “”.

Accela Automation Scripting Guide
A: Master Script Function List 116
addAddressStdCondition
Adds a standard condition to the specified reference address. If a standard condition is
associated with an ASI group (condition template), the method adds the condition with the
template fields and tables. You can call the method to add duplicate conditions to a record.

Version

2.0

Parameters

Notes

If addNum is null, the function adds the condition to all reference addresses associated with the
current record.

addAllFees
Adds all fees within a fee schedule to the record. Optionally flags the fees for automatic
invoicing by the script.

Version

1.3

Parameters

Parameters Type Description

addNum long Reference address number or null.

cType string Type of the standard condition.

cDesc string Description of the standard condition.

cStatus
(optional)

string Condition status.

Parameter Type Description

fsched string Fee schedule to be added.

fperiod string Fee period to be used.

fqty integer Quantity to be entered.

finvoice string Flag for invoicing (“Y” or “N”).

Accela Automation Scripting Guide
A: Master Script Function List 117
addAppCondition
Adds the condition to the record. If a standard condition is associated with an ASI group
(condition template), the method adds the condition with the template fields and tables. You can
call the method to add duplicate conditions to a record.

Version

2.0

Parameters

addASITable
Populates the ASI table with values.

Version

1.6

Parameters

Notes

tableValueArray is an array of arrays. Each array object within tableValueArray must contain an
associative index for each column in the target table.

Example

masterArray = new Array();

elementArray = new Array();

elementArray[“Table Column 1”] = “Row 1, column 1 Value”;

elementArray[“Table Column 2”] = “Row 1, column 2 Value”;

Parameter Type Description

cType string Type of condition (from admin->condition->condition type).

cStatus string Status (from admin->condition->condition status).

cDesc string Description of the condition.

cComment string Condition comment.

cImpact string Must be Lock, Hold, Notice, Required, or “”.

Parameter Type Description

tableName string Name of the ASI table to add to the record.

tableValueArray array of
associative
arrays

Values to populate the table.

capID (optional) CapIDModel Record to add table to.

Accela Automation Scripting Guide
A: Master Script Function List 118
masterArray.push(elementArray);

addASITable(“table name”,masterArray);

This example populates the 2-column table with one row.

addASITable4ACAPageFlow
Used by page flow scripts to add rows to an ASIT table. You can use this function to dynamically
populate an ASIT based on data from earlier pages.

Version

2.0

Parameters

Example

The following example adds a row to the TBL-DOCREQ table.

var cap = aa.env.getValue("CapModel");

var conditionTable = new Array();

var c = new Array();

c["Document Type"] = new asiTableValObj("Document
Type","Document","Y");

c["Name"] = new asiTableValObj("Name","Dangerous /
Vicious Dog Waiver","Y");

conditionTable.push(c);

asit = cap.getAppSpecificTableGroupModel();

new_asit = addASITable4ACAPageFlow(asit,"TBL-DOCREQ",
conditionTable);

addContactStdCondition
Adds a standard condition to the specified reference contact. If contactSeqNum is null, the
function adds the condition to all reference contacts associated with the current record. If a
standard condition is associated with an ASI group (condition template), the method adds the
condition with the template fields and tables. You can call the method to add duplicate
conditions to a record.

Parameter Type Description

DestinationTabl
eGroupModel

appSpecificTabl
eGroupModel

ASIT object from the current record in ACA.

tableName string Destination table name.

tableValueArray associative
array

Array of ASI table values to add.

Accela Automation Scripting Guide
A: Master Script Function List 119
Version

2.0

Parameters

addCustomFee
Adds a custom fee feecode to the record, from the fee schedule feesched with fee period
feeperiod.

Version

1.5

Parameters

Returns

Returns the Fee Sequence number of the fee added.

The fee period feeperiod must be a valid fee period for feecode in feesched, or this function
throws an error.

See also

addAllFees

Parameter Type Description

contactSeqNum long Reference contact sequence number or null.

cType string Type of the standard condition.

cDesc string Description of the standard condition.

cStatus
(optional)

string Condition status.

Parameter Type Description

feecode string Fee code to be added.

feesched string Fee schedule of the fee to be added.

feeDescr string A description of the custom fee item.

feePeriod string Fee period to be used.

feeAm double Fee quantity.

feeACC string Fee account code 1.

capID (optional) CapIDModel Record to add fee to.

Accela Automation Scripting Guide
A: Master Script Function List 120
addFee
Adds a single fee fcode to the record, from the fee schedule fsched with fee period fperiod and
quantity of fqty.

Version

1.3

Parameters

Returns

The fee period fperiod must be a valid fee period for fcode in fsched, or this function throws an
error.

Notes

If finvoice is Y, the function invoices the fee. If finvoice is N, the function assesses the fee but
does not invoice the fee.

If you use the capID optional parameter, the function updates record capID. If you do not use
the capID parameter, the function updates the current record.

getApplication(), getParent(), createChild() functions each returns a record ID object that you
can use in the capID parameter.

See Also

addAllFees

addFeeWithExtraData
Identical to the addFee function, but also allows you to populate the comment and user defined
fields.

Version

1.6

Parameter Type Description

fcode string Fee code to add.

fsched string Fee schedule of the fee to add.

fperiod string Fee period to use.

fqty integer Quantity to enter.

finvoice string Flag for invoicing (“Y” or “N”).

capID (optional) CapIDModel Record to add fee to.

Accela Automation Scripting Guide
A: Master Script Function List 121
Parameters

addLicenseCondition
Adds the condition (cType, cStatus, cDesc, cComment, cImpact) to the reference record for
each licensed professional on the record. If a standard condition is associated with an ASI
group (condition template), the method adds the condition with the template fields and tables.
You can call the method to add duplicate conditions to a record.

Version

2.0

Parameters

Notes

If you use the stateLicNum parameter, the function adds the condition to the licensed
professional reference record whose State License Number is stateLicNum. This licensed
professional may not be on the current record.

Parameter Type Description

fcode string Fee code to be added.

fsched string Fee schedule of the fee to be added.

fperiod string Fee period to be used.

fqty integer Quantity to be entered.

finvoice string Flag for invoicing (“Y” or “N”).

feeCap CapIDModel Record ID object.

feeComment string Comment field on the fee item.

UDF1 string Value for user defined field on fee item.

UDF2 string Value for user defined field on fee item.

Parameter Type Description

cType string Condition type.

cStatus string Condition status.

cDesc string Condition (30 characters maximum).

cComment string Condition comment (free text).

cImpact string Condition severity: Lock, Hold, Notice, Required, or "".

stateLicNum
(optional)

string State license number.

Accela Automation Scripting Guide
A: Master Script Function List 122
addLicenseStdCondition
Adds a standard condition to the specified reference licensed professional. If a standard
condition is associated with an ASI group (condition template), the method adds the condition
with the template fields and tables. You can call the method to add duplicate conditions to a
record.

Version

2.0

Parameters

Notes

If licSeqNum is null, the function adds the condition to all reference licensed professionals
associated with the current record.

addLookup
Adds a lookup entry to an existing standard choices item. Adds a new value called stdValue
with the value description of stdDesc to standard choices item name stdChoice.

Version

1.3

Parameters

Notes

If the standard choices item stdChoice already has a value entry called stdValue, the function
does not add or update stdValue. This function does not create the standard choices item
stdChoice if it does not exist.

Parameter Type Description

licSeqNum long Reference license sequence number or null.

cType string Type of the standard condition.

cDesc string Description of the standard condition.

cStatus
(optional)

string Condition status.

Parameter Type Description

stdChoice string Standard choices item name.

stdValue string Standard choices value.

stdDesc string Standard choices value description.

Accela Automation Scripting Guide
A: Master Script Function List 123
addParcelAndOwnerFromRefAddress
Copies the associated parcel and owner from a reference address to the specified record. If you
do not specify a record, the function uses the current record as the target.

Version

1.6

Parameters

addParcelCondition
Adds a condition to the reference parcel whose number is parcelNum. If a standard condition is
associated with an ASI group (condition template), the method adds the condition with the
template fields and tables. You can call the method to add duplicate conditions to a record.

Version

2.0

Parameters

Notes

The condition’s Type, Condition (description), Status, Severity and Comment corresponds to
cType, cDesc, cStatus, cImpact, and cComment, respectively. The condition’s Apply and
Effective dates equal the current date. The condition’s Applied By and Action By staff names
equal the current user’s name.

If you use null for the parcelNum parameter, the function adds the condition to all parcels on the
current record.

Parameter Type Description

refAddress long Reference address number to copy data from.

capID (optional) CapIDModel Target record for parcel and owner.

Parameter Type Description

parcelNum string Parcel number to add the condition to. If null, the function adds
the condition to all parcels on the record.

cType string Condition type.

cStatus string Condition status.

cDesc string Condition name.

cComment string Condition comment.

cImpact string Condition severity.

Accela Automation Scripting Guide
A: Master Script Function List 124
addParcelDistrict
Adds a district to the parcel on a record.

Version

1.6

Parameters

Notes

Does not edit reference parcel data.

If parcelNum is null, the function adds the district to all parcels on the current record.

addParent
Adds the current record as a hierarchal child to the parent record parentAppNum.

Version

1.3

Parameters

addrAddCondition
Adds a condition (pType, pStatus, pDesc, pComment, pImpact) to the address on the record
whose address number is pAddrNum.

Version

1.4

Parameters

Parameter Type Description

parcelNum string Parcel number that district adds to.

districtValue string Value of district entry to add.

Parameter Type Description

parentAppNum string App number (B1_ALT_ID) of the record to be parent of the
current record.

Parameter Type Description

pAddrNum number Address number. Use null for all addresses on record.

pType string Condition type.

pStatus string Condition status.

Accela Automation Scripting Guide
A: Master Script Function List 125
Returns

True if the function adds the condition, false otherwise.

Notes

If pAddrNum is null, adds the condition to all the addresses on the record. If pAllowDup is N,
the function does not add a condition to the address if the same condition is already on the
address. If pAllowDup is Y, the function adds the condition to the address even if this action
duplicates the condition on the address.

The function adds the condition to the reference Address record. The function adds the
condition only if you use the Search button on the record’s Address screen or use the Get
Associated Object button on the record’s parcel screen to add the address to the record. If you
enter the address manually, the function does not add the condition.

The pAddrNum value comes from B3ADDRES.

L1_ADDRESS_NBR, not B3ADDRES.B1_ADDRESS_NBR.

addReferenceContactByName
Adds a reference contact to the current record, based on the name of the contact. The function
only adds the first matching contact.

Version

1.6

Parameters

addressExistsOnCap
Returns true if there is at least one address on the record.

pDesc string Condition name.

pComment string Condition comment.

pImpact string Condition severity.

pAllowDup string Determines whether to add duplicate condition to address.

Parameter Type Description

vFirst string First name of reference contact.

vMiddle string Middle name of reference contact.

vLast string Last name of reference contact.

Parameter Type Description

Accela Automation Scripting Guide
A: Master Script Function List 126
Version

1.6

Parameters

addStdCondition
Retrieves all standard conditions named cDesc whose type is cType and adds them to the
record. If a standard condition is associated with an ASI group (condition template), the method
adds the condition with the template fields and tables. You can call the method to add duplicate
conditions to a record.

Version

2.0

Parameters

Notes

The function assigns the following values to the condition:

 Status = Applied

 Applied By = current user

 Action By = current user

 Apply Date = current date

 Effective Date = current date

 Expiration Date = blank

You can only use the function with Accela Automation 6.4 and later.

addTask

Dynamically adds a task.

Version

2.0

Parameter Type Description

capID (optional) CapIDModel Record ID to check.

Parameter Type Description

cType string Condition type.

cDesc string Condition name.

capID (optional) CapIDModel Record to add condition to.

Accela Automation Scripting Guide
A: Master Script Function List 127
Parameters

Notes

The function uses the source task for all task information such as assignment and statuses. If
insertTaskType equals N, the function adds the task to the end of the workflow in series.

addTimeAccountingRecord
Adds a time accounting entry that associates with a record.

Version

2.0

Parameters

Example

capID = aa.cap.getCapID("11CAP-00000-0000D").getOutput()

addTimeAccountingRecord(“BSMITH”,“Actual”,”Inspection”,"0
7/28/2011","1.1",capID,true);

addTimeAccountingRecordToWorkflow
Adds a time accounting entry associated with a workflow task on a record.

Parameter Type Description

sourceTaskNam
e

string Name of the task to replicate.

newTaskName string Name of the new task.

insertTaskType char Type of task to add (P for parallel or N for next).

recordId
(optional)

CapIdModel Record to which to add the task.

Parameter Type Description

taskUser string User ID of the Accela Automation user.

taGroup string Group of the time accounting entry.

taType string Type of the time accounting entry.

dateLogged string Date of the time accounting entry.

hoursSpent string Number of hours for the entry.

itemCap CapIdModel Record to associate to the entry.

billableBool boolean True to set the billable flag, otherwise false.

Accela Automation Scripting Guide
A: Master Script Function List 128
Version

2.0

Parameters

Example

capID = aa.cap.getCapID("11CAP-00000-0000D").getOutput()

addTimeAccountingRecordToWorkflow(“BSMITH”,“Actual”,”Insp
ection”,"07/28/
2011","1.1",capID,”Inspection”,”BLD_MAIN”,true);

addToASITable
Adds one row of values (tableValues) to the application specific info (ASI) table called
tableName.

Version

1.4

Parameters

Notes

The tableValues parameter must be an associative array of string values, where each element
name is a column name in the ASI table tableName, and the element stores the column value. If

Parameter Type Description

taskUser string User ID of the Accela Automation user.

taGroup string Group of the time accounting entry.

taType string Type of the time accounting entry.

dateLogged string Date of the time accounting entry.

hoursSpent string Number of hours for the entry.

itemCap CapIDModel Record to associate to the entry.

taskName string Name of the task to associate with the entry.

processName string Name of the workflow process that contains the task.

billableBool boolean True to set the billable flag, otherwise false.

Parameter Type Description

tableName string The application specific information table name.

tableValues array of strings Values for a single table row, as an associative array of strings.

capID (optional) CapIDModel Record ID object for record.

Accela Automation Scripting Guide
A: Master Script Function List 129
you use the capID parameter, the function adds tableValues to tableName in the record whose
record ID object is capID.

The parameter tableValues does not have to contain all the columns in the ASI table
tableName. The ASI table tableName must already exist on the record.

allTasksComplete

Version

1.3

Parameters

Returns

Returns true if all tasks (excluding tasks in optional igTask1… igTaskn list) in workflow process
/ subprocess stask are complete. Returns false if any task is incomplete.

Notes

stask is R1_PROCESS_CODE in the GPROCESS and SPROCESS tables.

Examples

To determine if all tasks in workflow BLDG are completed:

allTasksComplete("BLDG")

To determine if all tasks in workflow BLDG are complete, except for the Optional Review task
and Closure task:

allTasksComplete("BLDG","Optional Review", "Closure")

appHasCondition

Version

1.4

Parameters

Parameter Type Description

stask string Process name of workflow to check.

igTask1 …
igTaskn
(optional)

string Names of tasks to ignore. Enter one or more task name
parameters. Case sensitive.

Parameter Type Description

pType string Condition type.

pStatus string Condition status.

Accela Automation Scripting Guide
A: Master Script Function List 130
Returns

Returns true if the record has a record condition whose type is pType, name is pDesc, status is
pStatus, and severity is pImpact; otherwise, returns false.

Notes

Use null in place of any parameter if you do not want to filter by that item. For example, to
check if the record has any condition at all, use appHasCondition(null, null, null,
null).

applyPayments
On the current record (capID) this function takes any unapplied payments and distributes them
to any invoiced fee items.

Version

2.0

Parameters

None

Notes

The function loops through all fee items and applies the payments until all funds are applied, or
no more unpaid fee items remain.

appMatch

Version

1.3

Parameters

pDesc string Condition name.

pImpact string Condition severity.

Parameter Type Description

ats string Four level record type. Must contain 3 slash (/) characters.
Case sensitive. Do not add spaces before or after slashes. You
can use the asterisk (*) as a wildcard to match all entries for a
given level.

capID (optional) CapIDModel Record to check.

Parameter Type Description

Accela Automation Scripting Guide
A: Master Script Function List 131
Returns

Returns true if ats matches the current record’s record type, false if it does not.

Notes

Compares the current record type to ats. You can use the asterisk (*) as a wildcard to match all
entries for a given level. For example: appMatch(“Building/*/Sign/*/*”) evaluates to True for
record type Building/Commercial/Sign/Billboard as well as Building/Residential/Sign/Garage
Sale.

ats must contain 3 slash characters (/). Do not add spaces immediate before or after the slash (/
).

appNameIsUnique

Version

1.4

Parameters

Returns

Returns true if none of the other records, whose app type begins with gaGroup / gaType, used
the record name gaName. Returns false if gaName is not unique.

assignCap
Assigns the staff whose user ID is assignId to the current record. Also assigns the user's
department.

Version

1.5

Parameters

Parameter Type Description

gaGroup string Record group (the 1st level of record type).

gaType string Record type (the 2nd level of record type).

gaName string Record name to test.

Parameter Type Description

assignId string User ID of the user to whom to assign the record.

capID (optional) CapIDModel Record ID to which to assign the user.

Accela Automation Scripting Guide
A: Master Script Function List 132
Notes

If you use the optional parameter capID, the function assigns the staff and department to the
record capID instead.

assignInspection
Assigns the inspector whose user ID is iName to the inspection whose sequence number is
iNumber.

Version

1.4

Parameters

Notes

The inspection must already be scheduled on the record.

assignTask
Assigns the staff whose user ID is username to workflow task wfstr.

Version

1.3

Parameters

Notes

The function does not create a workflow history for the record.

If record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr to activate.

Parameter Type Description

iNumber number Inspection sequence number.

iName string Inspector's user ID.

capID (optional) CapIDModel Record ID to which to assign the inspector.

Parameter Type Description

wfstr string Workflow task to which to assign a user.

username string User ID of the user to whom to assign the task. Case sensitive.

wfProcess
(optional)

string Process name of workflow for wfstr. Case sensitive.

Accela Automation Scripting Guide
A: Master Script Function List 133
wfProcess is R1_PROCESS_CODE in the GPROCESS and SPROCESS tables. username
and wfProcess are normally in uppercase.

autoAssignInspection
Uses the automatic inspection assignment function to assign the specified inspection.

Version

1.6

Parameters

branch
Executes the standard choice script control whose name is iNumber as a sub-control.

Version

1.3

Parameters

Notes

The script stdChoice must contain only valid criteria/action pairs sequentially numbered.

Example

branch("Inspection:Update Expiration")

branchTask
Updates the workflow task wfstr as follows

 Status = wfstat

 Status Date = current date

 Status Comment = wfcomment

 Action By = current user

Version

1.3

Parameter Type Description

iNumber long Sequence number for the inspection to assign.

Parameter Type Description

stdChoice string Standard choices item namestring. Case sensitive.

Accela Automation Scripting Guide
A: Master Script Function List 134
Parameters

Notes

The function closes the task wfstr and the workflow proceeds to the branch task.

If record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr to edit.

capHasExpiredLicProf

Version

1.4

Parameters

Returns

Returns true if any licensed professional on the record has expired; otherwise, returns
false.

Notes

Checks for expiration by retrieving the licensed professional reference record having the same
license # and checking the expiration date specified by pDateType. If the expiration date is on or
before the current date, the script returns true. Skips disabled licensed professionals.

Use parameter pLicType to check a specific license type. Use parameter pCapId to check
licensed professionals on a record other than the current record.

Parameter Type Description

wfstr string Workflow task name.

wfstat string Status.

wfcomment string Comment.

wfnote string Note to add to the workflow task.

wfProcess
(optional)

string ID (R1_PROCESS_CODE) for the process that the task
belongs to. Required for multi-level workflows.

Parameter Type Description

pDateType string Expiration date to check. Options (use one): EXPIRE,
INSURANCE, BUSINESS.

pLicType
(optional)

string License type.

pCapId
(optional)

CapIDModel Record ID object of record. If null, the function applies to the
current record.

Accela Automation Scripting Guide
A: Master Script Function List 135
capIdsFilterByFileDate
Searches though the records in pCapIdArray and returns only records whose file date is
between pStartDate and pEndDate, as an array of capId (CapIDModel) objects

Version

1.4

Parameters

Notes

To find the number of records returned, store the return value to a variable and use the length
property to find the number of records in the array.

Example

capArray = capIdsFilterByFileDate(myCapArray, "01/01/
2006", "12/31/2006"); capCount = capArray.length;

capIdsGetByAddr
Returns records that have the same property address as the current record, as an array of
capId (CapIDModel) objects.

Version

1.4

Parameters

None

dateType Expiration Date Field Checked

EXPIRE License Expiration Date

INSURANCE Insurance Expiration Date

BUSINESS Business License Expiration Date

Parameter Type Description

pCapIdArray array of
CapIDModel
objects

Array of record ID (CapIDModel) objects to filter.

pStartDate string Start date of the file date range, in MM/DD/YYYY format.

pEndDate string End date of the file date range, in MM/DD/YYYY format.

Accela Automation Scripting Guide
A: Master Script Function List 136
Returns

If the current record has no property address, returns false.

Notes

The function matches addresses based on these fields:

 House Nbr Start

 Street Direction

 Street Name

 Street Suffix

 Zip

You can use this function with all events except ApplicationSubmitBefore. The records returned
include the current record. If the current record has more than one property address, the
function uses the first address to match.

To find the number of records returned, store the return value to a variable and use the length
property to find the number of records in the array.

Example

capArray = capIdsGetByAddr(); logDebug("Number of CAPs: "
+ capArray.length);

capIdsGetByParcel
Returns records that have the same parcel as the current record, as an array of capId
(CapIDModel) objects.

Version

1.4

Parameters

Returns

If the current record has no parcel, returns false.

Notes

The records returned include the current record.

To find the number of records returned, store the return value to a variable and use the length
property to find the number of records in the array.

Parameter Type Description

pParcelNum
(optional)

string Parcel number to search for. If null or omitted, the function uses
the first parcel number on the current record.

Accela Automation Scripting Guide
A: Master Script Function List 137
Example

capArray = capIdsGetByParcel(); logDebug("Number of CAPs:
" + capArray.length);

capSet

Version

2.0

Parameters

Notes

capSet is a helper object that assists in managing Accela Automation Sets of records. If the
desiredSetId already exists as a Set, it loads automatically. If the desiredSetId does not exist,
function creates it as an empty set.

Methods

Properties

checkCapForLicensedProfessionalType
Returns true if a licensed professional of the type exists on the current record.

Version

1.6

Parameter Type Description

desiredSetId string The ID of the set to create or operate on by the capSet object.

refresh() The capSet object reloads and all properties refresh.

add(capId) Adds the supplied capId to the set.

remove(capId) Removes the supplied capId from the set.

update() The header information about the set updates to the current values. This
header information includes the set name and set comment.

id The Id of the set.

name The name of the set.

comment The set comment.

size The number of records in the set.

empty True if the set has no members.

members An array or CapIDModel objects representing the membership of the set.

Accela Automation Scripting Guide
A: Master Script Function List 138
Parameters

checkInspectionResult

Version

1.3

Parameters

Returns

Returns true if the inspection insp2Check has the result of insp2Result, or false if it does not.

Notes

You can use Scheduled as the value for the insp2Resultin parameter to check if inspection
insp2Check is scheduled (not yet resulted).

childGetByCapType
Searches through all child records and returns the record ID object for the first child record
whose record type matches pCapType.

Version

1.4

Parameters

Parameter Type Description

licProfType string Licensed professional type to check for.

Parameter Type Description

insp2Check string Inspection to check. Case sensitive.

insp2Result string Inspection result (or status) to look for. Case sensitive.

Parameter Type Description

pCapType string Four level record type. Must contain 3 slash (/) characters. Do
not add spaces before or after slashes. You can use the
asterisk (*) as a wildcard to match all entries for a given level.

pParentCapId
(optional)

CapIDModel Record ID object for parent record. Use null if you use the
skipChildCapId parameter.

skipChildCapId
(optional)

CapIDModel Record ID object of child record to skip.

Accela Automation Scripting Guide
A: Master Script Function List 139
Notes

If you use the pParentCapId parameter, the function searches child records of the record whose
record ID object is pParentCapId. If you use the skipChildCapId parameter, the function skips
over any child record whose record ID object is skipChildCapId.

To find the sibling of the current record, use the function getParent() as the parentCapId
parameter and capId as the skipChildCapId parameter.

Example

siblingCapId = childGetByCapType("*/*/*/*", getParent(),
capId)

See also

getChildren

closeCap

Version

2.0

Parameters

Notes

Sets the Closed Date value to the current date and the Close by Staff field to the ID of the user
who closes the record.

closeSubWorkflow

A function that is useful when working with sub-processes.

Version

1.6

Parameters

Parameter Type Description

userId string ID of user who closes the record.

capId (optional) CapIDModel Record to perform action on.

Parameter Type Description

thisProcessID long value ID of the process to check.

wfStat string Status to use when closing the parent task.

capId (optional) CapIDModel Record to perform action on.

Accela Automation Scripting Guide
A: Master Script Function List 140
Notes

Checks all the tasks in the subprocess for completeness. If all tasks are complete, the function
closes the parent task with the specified status.

Example

closeSubWorkflow(wfProcessID,"Completed");

closeTask
Updates the workflow task wfstr as follows:

 Status = wfstat

 Status Date = current date

 Status Comment = wfcomment

 Action By = current user

Version

1.3

Parameters

Notes

Closes the task wfstr and promotes the workflow to the next task, even if wfstat loops or
branches. If workflow needs to loop or branch, use loopTask or branchTask functions.

If record’s workflow contains duplicate wfstr tasks, use wfProcess parameter to specify the
process or subprocess whose wfstr to edit.

This old name for this function is closeWorkflow2.

comment
You can use this function to display messages to the user, as well as variables to aid in
debugging issues.

Parameter Type Description

wfstr string Workflow task name.

wfstat string Status to update.

wfcomment string Comment to add.

wfnote string Note to add to the workflow task.

wfProcess
(optional)

string ID (R1_PROCESS_CODE) for the process that the task
belongs to. Required for multi-level workflows.

Accela Automation Scripting Guide
A: Master Script Function List 141
Version

1.3

Parameters

Notes

Use logMessage and logDebug functions instead.

Adds the message cstr to the message/debug window when the script executes. If you enable
debugging (i.e., showDebug = true), the comment shows in the debug messages. If you enable
messages (i.e., showMessage = true), the comment shows in the messages. If you do not
enable debugging or messages, the comment does not display.

Use this function instead of directly assigning value to message variable in script control.

Example

true ^ comment(“calcValue is “ + calcValue)

true ^ comment(“The building fees have been added
automatically”)

comparePeopleGeneric
This function passes as a parameter to the createRefContactsFromCapContactsAndLink
function.

Version

1.6

Parameters

Returns

Takes a single peopleModel as a parameter, and returns the sequence number of the first
G6Contact result. Returns null if there are no matches

Notes

To use attributes, you must implement Salesforce case 09ACC-05048.

Parameter Type Description

cstr string Comment to display.

Parameter Type Description

peop peopleModel The peopleModel object containing the criteria.

Accela Automation Scripting Guide
A: Master Script Function List 142
completeCAP

Version

1.5

Parameters

Notes

Assigns the staff whose user ID is userId to the Completed by Staff field on a record. Also sets
the Completed by Date value to the current date.

If you use the capId optional parameter, the function updates record capId. If you do not use the
capId parameter, the function updates the current record.

contactAddFromUser

Version

1.6

Parameters

Notes

Searches for a reference contact that matches the supplied userID, based on first, middle, and
last names. If the function finds a matching contact, the function adds the record contact to the
current record.

contactSetPrimary
Sets the supplied contact to be the primary contact on the current record

Version

1.6

Parameters

Parameter Type Description

userId string ID of user that completes the record.

capId (optional) CapIDModel Record with which to perform the action.

Parameter Type Description

pUserId string User ID used as criteria to search for contact.

Parameter Type Description

pContactNbr long Sequence number of the contact to make primary.

Accela Automation Scripting Guide
A: Master Script Function List 143
contactSetRelation
Sets the relationship code on the supplied contact, on the current record.

Version

1.6

Parameters

convertDate
Converts a scriptDateTime date to a javascript date.

Version

1.6

Parameters

convertStringToPhone
Converts the string to phone codes (A=1, D=3, etc), useful with the setIVR function.

Version

1.6

Parameters

copyAddresses
Copies all property addresses from record pFromCapId to record pToCapId. If record pToCapId
has a primary address, any primary address in pFromCapId becomes non-primary when copied
over.

Version

1.4

Parameter Type Description

pContactNbr long Sequence number of the contact.

pRelation string Set to this relationship code.

Parameter Type Description

thisDate scriptDateTime The date to convert.

Parameter Type Description

theString string String containing information to convert.

Accela Automation Scripting Guide
A: Master Script Function List 144
Parameters

Notes

getApplication(), getParent(), createChild(), createCap() functions each returns a record ID
object.

copyAppSpecific
Copies all app spec info values from current record to the record whose record ID object is
newCap. If the target record does not have the same app specific info field, the does not copy
the value.

Version

1.3

Parameters

copyASIFields
Copies all ASI fields from the sourceCapId record to the targetCapId record with the exception
of the ASI subgroups listed in ignore1 . . . ignoren

Version

1.5

Parameters

Parameter Type Description

pFromCapId CapIDModel ID of record from which to copy.

pToCapId CapIDModel ID of record to which to copy. If null, the function uses the
current record.

Parameter Type Description

newCap CapIDModel ID of record from which to copy.

ignoreArr
(optional)

string array Array of ASI labels not to ignore and not copy.

Parameter Type Description

sourceCapId CapIDModel ID of record from which to copy.

targetCapId CapIDModel ID of record to which to copy.

ignore1 to

ignoren

(optional)

string ASI subgroups to ignore during the copy.

Accela Automation Scripting Guide
A: Master Script Function List 145
Notes

This function moves the ASI fields themselves, not the values. You can add an ASI group to a
record that did not previously include the ASI group. This function does not copy the form portlet
designer settings, which can cause problems.

copyASITables
Copies ASI Tables from one Record to another. This function depends on the addASITable
function.

Version

2.0

Parameters

copyCalcVal
Copies the calculated job value from the current record to the record whose record ID object is
pToCapId.

Version

1.4

Parameters

copyConditions
Copies all conditions from record capId to the current record (if you do not specify toCapId) or
the specified record.

Version

1.3

Parameter Type Description

pFromCapId CapIDModel ID of record from which to copy.

pToCapId CapIDModel ID of record to which to copy.

ignoreArr
(optional)

string array Array of table names to ignore and not copy.

Parameter Type Description

fromcap CapIDModel ID of record from which to copy.

newcap CapIDModel ID of record to which to copy.

Accela Automation Scripting Guide
A: Master Script Function List 146
Parameters

Example

true ^ subdivapp =
getApplication(lookup("SubdivisionXref",{SubDiv})) ;

copyConditions(subdivapp)

copyConditionsFromParcel
Copies conditions from the reference parcel parcelIdString and adds them as conditions to the
current record (not to parcels on the current record).

Version

1.4

Parameters

copyContacts
Copies all contacts from record pFromCapId to record pToCapId.

Version

1.3

Parameters

Notes

If target record has a primary contact and the source record also has a primary contact, the
target record ends up with 2 primary contacts.

getApplication(), getParent(), createChild(), createCap() functions each return a Cap ID object.

Parameter Type Description

fromCapId CapIDModel ID of record from which to copy.

toCapId
(optional)

CapIDModel ID of record to which to copy.

Parameter Type Description

parcelIdString string Parcel number of source parcel.

Parameter Type Description

pFromCapId CapIDModel ID of record from which to copy.

pToCapId CapIDModel ID of record to which to copy. If null, the function uses the
current record.

Accela Automation Scripting Guide
A: Master Script Function List 147
copyContactsByType
Copies only contacts of the specified type from record pFromCapId to record pToCapId.

Version

2.0

Parameters

Notes

If target record has a primary contact and the source record also has a primary contact, the
target record ends up with 2 primary contacts.

getApplication(), getParent(), createChild(), createCap() functions each return a Cap ID object.

copyFees
Copies all fees from record sourceCapId to record targetCapId. Excludes voided or credited
fees.

Version

1.5

Parameters

copyLicensedProf
Copies all licensed professionals from sCapId to record tCapId.

Version

1.6

Parameter Type Description

pFromCapId CapIDModel ID of record from which to copy.

pToCapId CapIDModel ID of record to which to copy. If null, the function uses the
current record.

pContactType string Contact type to copy.

Parameter Type Description

sourceCapId CapIDModel ID of record from which to copy fees.

targetCapId CapIDModel ID of record to which to copy.

Accela Automation Scripting Guide
A: Master Script Function List 148
Parameters

copyOwner
Copies a contacts from sCapID to tCapID.

Version

1.6

Parameters

copyOwnersByParcel
Copies reference owners from all attached parcels to the current record.

Version

2.0

Parameters

None

copyParcelGisObjects
Copies parcel GIS objects to the record.

Version

1.3

Parameters

None

copyParcels
Copies all parcels, and parcel attributes, from record pFromCapId to record pToCapId.

Parameter Type Description

sCapId CapIDModel ID of record from which to copy licensed professionals.

tCapId CapIDModel ID of record to which to copy.

Parameter Type Description

sCapID CapIDModel ID of record from which to copy.

tCapID CapIDModel ID of record to which to copy.

Accela Automation Scripting Guide
A: Master Script Function List 149
Version

1.4

Parameters

Notes

capId is the record ID object for the current record.

getApplication(), getParent(), createChild(), createCap() functions each return a record ID
object.

copySchedInspections
Copies all scheduled inspections from record pFromCapId to record pToCapId.

Version

1.4

Parameters

Notes

Includes inspections that have a pending-type result, but copies status over as Scheduled. You
do not need to copy the inspection type to the target record. The function can copy duplicate
inspections to the target record.

capId is the record ID object for the current record.

getApplication(), getParent(), createChild(), createCap() functions each return a record ID
object.

countActiveTasks
Returns the number of active tasks in the workflow whose process name is processName.

Version

1.4

Parameter Type Description

pFromCapId CapIDModel ID of record from which to copy.

pToCapId CapIDModel ID of record to which to copy. If null, the function uses the
current record.

Parameter Type Description

pFromCapId CapIDModel ID of record from which to copy.

pToCapId CapIDModel ID of record to which to copy. If null, the function uses the
current record.

Accela Automation Scripting Guide
A: Master Script Function List 150
Parameters

countIdenticalInspections
Returns the number of inspections that have the same inspection description and status (or
result) as the inspection in the current event.

Version

1.4

Parameters

None

Notes

Use this function only with the following events:

 InspectionResultSubmitAfter

 InspectionScheduleAfter

 InspectionScheduleBefore

createAddresses
Adds an address to the record.

Version

2.0

Parameters

createCap
Creates a record of type pCapType with the record name of pAppName.

Version

1.4

Parameter Type Description

processName string Process name of workflow.

Parameter Type Description

targetCapID CapIDModel Record ID object.

addressModel AddressModel Address.

Accela Automation Scripting Guide
A: Master Script Function List 151
Parameters

Returns

Returns the new record’s record ID object.

createCapComment
Creates a record comment for the specified record

Version

1.6

Parameters

createChild
Creates a record of type grp/typ/stype/cat with the record name, and links it as a child to the
current record’s hierarchy.

Version

1.3

Parameters

Parameter Type Description

pCapType string Four level record type. Must contain 3 slash (/) characters. Do
not add spaces before or after slashes.

pAppName string Record name.

Parameter Type Description

vComment string Comment to add.

capId (optional) CapIDModel Record for which to create a comment.

Parameter Type Description

grp string App Group. Top classification of the record.

typ string App Type. Second classification of the record.

stype string App SubType: 3rd Classification of the record.

cat string App Category: 4th Classification of the record.

desc string Record name.

capId (optional) CapIDModel Record to be the parent of new record.

Accela Automation Scripting Guide
A: Master Script Function List 152
Returns

The new child record’s ID.

Notes

The function copies the following data from the current record to the new child record.

 parcels

 contacts

 property addresses

createParent
Creates a record of type grp/typ/stype/cat with the record name, and links it as a parent to the
current record’s hierarchy.

Version

2.0

Parameters

Returns

The new parent record’s record ID object, to be used in other functions.

Notes

The following data are copied from the current record to the new parent record.

 parcels

 contacts

 property addresses

createPendingInspection
Creates a pending inspection of the specified group and type on the specified record.

Version

2.0

Parameter Type Description

grp string App Group. Top classification of the record.

typ string App Type. Second classification of the record.

stype string App SubType: 3rd Classification of the record.

cat string App Category: 4th Classification of the record.

desc string Record name.

Accela Automation Scripting Guide
A: Master Script Function List 153
Parameters

Notes

Uses the current record (capId global variable) if no capId parameter supplied.

createPendingInspFromReqd
Creates a pending inspection for all inspections that are configured as required in the inspection
group associated to the record type.

Version

2.0

Parameters

createPublicUserFromContact
Creates a public user account (Accela Citizen Access) with information based on the contact.

Version

1.6

Parameters

Notes

Useful for automatically creating an online account for applicants that apply in the office.

 Creates the public user record

 Assigns to current agency

 Activates for the current agency

 Issues a password reset to their email address

Parameter Type Description

iGroup string Inspection group of the inspection to create.

iType string Inspection type of the inspection to create.

capId (optional) CapIDModel Record on which to create the inspection.

Parameter Type Description

capId (optional) CapIDModel Record on which to create the inspection.

Parameter Type Description

contactType
(optional)

 string The public user is based on this contact type, default is
Applicant.

Accela Automation Scripting Guide
A: Master Script Function List 154
 Sends activation email

createRefContactsFromCapContactsAndLink
This function can be used as the basis for maintaining a contact-centric database within Accela
Automation.

Version

1.6

Parameters

Example

iArr = new Array();

iArr.push(“Partner Percent”)

createRefContactsFromCapContactsAndLink(capId,null,iArr,f
alse,true,comparePeopleGeneric);

In this example, when this code is executed, the function loops through all contacts on the
current record. If the contact was hand-entered (not selected and validated from reference
contacts) the reference contacts searches for a match using the comparePeopleGeneric
function. If a match is found, the record contact links to the reference contact. Also, the
reference contact refreshes with data from the cap contact. All attributes refresh except for the
“Partner Percent” field.

Version 2.0 Update: This function now checks for the presence of a standard choice
“REF_CONTACT_CREATION_RULES”. See screenshot below for configuration.

Parameter Type Description

pCapId CapIDModel Record to work with.

contactTypeArray array The contact types to process, or null for all. This parameter
is ignored if the
REF_CONTACT_ENFORCE_TYPE_FLAG_WITH_EMSE
standard choice is configured. See description for more
detail.

ignoreAttributeArray array An array of attributes to ignore when creating a REF contact,
or null.

replaceCapContact boolean Not implemented.

overwriteRefContact boolean If true, refreshes the linked ref contact with record contact
data.

refContactExists function Function used to determine if the reference contact exists.

Accela Automation Scripting Guide
A: Master Script Function List 155
This setting determines whether to create the reference contact, as well as the contact type with
which to create the reference contact. If this setting is configured, the function ignores the
contactTypeArray parameter. The “Default” in this standard choice determines the default action
of all contact types. Other types can be configured separately. Each contact type can be set to
“I” (create ref as individual), “O” (create ref as organization), “F” (follow the indiv/org flag on the
cap contact), “D” (Do not create a ref contact), or “U” (create ref using the transactional contact
type”).

createRefLicProf
Creates a new reference Licensed Professional from the Contact on the current record whose
contact type is pContactType.

Version

1.4

Parameters

Notes

The Licensed Professional has the state license # of rlpId and license type of rlpType. If a
reference Licensed Professional with state license # rlpId already exists, it updates with data
from the Contact.

Contact’s State field must be populated for the Licensed Prof to be created.

The function does not copy the Contact’s middle name and address line 3 to the Licensed Prof.

Parameter Type Description

rlpId string State license number.

rlpType string License type.

pContactType
(optional)

string Contact type.

Accela Automation Scripting Guide
A: Master Script Function List 156
If available, the following app specific info fields copy to the Licensed Prof (field labels must
match exactly):

 Insurance Co

 Insurance Amount

 Insurance Exp Date

 Policy #

 Business License #

 Business License Exp Date

createRefLicProfFromLicProf
Retrieves the first licensed professional on the record and creates a reference licensed
professional record. If a reference record already exists for this licensed professional, updates
the reference licensed record with the licensed professional’s data from the record.

Version

1.4

Parameters

None

dateAdd
Returns date that results from adding amt days to td, as a string in “MM/DD/YYYY” format.

Version

1.3

Parameters

Notes

Does not work if date is wfDate. Returns NaN/NaN/NaN.

Parameter Type Description

td string Starting date, in format “MM/DD/YYYY” (or any string that
converts to JS date). If null is used, td is the current date.

amt integer Number of days to add to td. Use negative number (e.g. –20) to
subtract days from td.

workDays
(optional)

string ‘Y’ if amt workdays should be added to td. Omit if amt calendar
days should be added to td.

Accela Automation Scripting Guide
A: Master Script Function List 157
dateAddMonths
Returns date that results from adding pMonths months to pDate, as a string in “MM/DD/YYYY”
format.

Version

1.4

Parameters

Notes

If pDate is the last day of the month, the returned date is the last day of the month. If pDate is
not the last day of the month, the new date has the same day of month, unless such a day
doesn't exist in the new month (e.g. if baseDate is 1/30/2007 and the returned month is
February), in which case the new date is the last day of the month.

Does not work if baseDate is wfDate. Returns NaN/NaN/NaN.

dateFormatted
Returns formatted date in YYYY-MM-DD or MM/DD/YYYY format (default).

Version

1.3

Parameters

dateNextOccur
Returns the next occurrence of pMonth and day after pDate. If oddEven is “odd”, gets the next
occurrence of pMonth and day after pDate in an odd year (for example, year is an odd number).
If oddEven is “even”, gets the next occurrence of pMonth and day after pDate in an even year.

Parameter Type Description

pDate string Starting date, in format “MM/DD/YYYY” (or any string that
converts to JS date). If null is used, td is the current date.

pMonths integer Number of months to add to pDate. Use negative number (e.g. -
12) to subtract months from td.

Parameter Type Description

pMonth string Month of new date, as 2-digit month.

pDay string Day of new date, as 2-digit day.

pYear string Year of new date as 4-digit year.

pFormat string Format to produce string in.

Accela Automation Scripting Guide
A: Master Script Function List 158
Version

1.3

Parameters

Notes

The pDate parameter can be a date string in MM/DD/YYYY format, or an event-specific variable
(e.g. wfDate) whose date format is YYYY-MM-DD.

deactivateTask
Deactivates the task, similar to setting Active? = N in the workflow supervisor portlet

Version

1.6

Parameters

deleteTask
Permanently removes the named task from the workflow.

Version

1.6

Parameter Type Description

pMonth string Month of new date, as 2-digit month.

pDay string Day of new date, as 2-digit day.

pDate string Date from which new date is determined. In format MM/DD/
YYYY or YYYY-MM-YY as used by wfDate variable.

oddEven
(optional)

string Specifies if the new date should be in an odd or even year.
Enter “odd” or “even”.

Parameter Type Description

wfstr string Workflow task to be deactivated.

wfProcess
(optional)

string Process name of workflow task wfstr.

Accela Automation Scripting Guide
A: Master Script Function List 159
Parameters

editAppName
Updates record name to newName.

Version

1.5

Parameters

Returns

Returns true if successful or false if update fails.

editAppSpecific
Updates the value of the app specific info field itemName with the value itemValue. Also
updates the internal list of values, so that future criteria/action pairs do not see the correct
value. If no capId is supplied, then the current record is used.

Version

1.3

Parameters

Parameter Type Description

targetCapId CapIDModel Record to affect.

deleteTaskNam
e

string Name of task to delete.

Parameter Type Description

newName string New record name.

capId (optional) CapIDModel Record ID object for record.

Parameter Type Description

itemName string App Specific Info field to edit.

itemValue string Value that the app spec info field itemName should be changed
to.

capId (optional) CapIDModel Record ID object for record whose app spec info field
itemName is to be changed to itemValue.

Accela Automation Scripting Guide
A: Master Script Function List 160
editBuildingCount
Edits the building count on the record detail.

Version

1.6

Parameters

editCapContactAttribute
Changes the value of a record contact attribute.

Version

2.0

Parameters

Notes

The attribute name must be in ALL CAPS.

Example

editCapContactAttribute(60549773,"HAIR
COLOR","Yellow",thisCapId);

editChannelReported
Changes the channel reported value to value passed to function.

Version

2.0

Parameter Type Description

numBuild string New number of buildings.

capId (optional) CapIDModel The capID to affect.

Parameter Type Description

contactSeq long Sequence number of the record contact to edit.

pAttributeName string Label of the attribute to edit.

pNewAttributeV
alue

string New value of the attribute.

itemCapId
(optional)

CapIDModel Record on which the record contact belongs.

Accela Automation Scripting Guide
A: Master Script Function List 161
Parameters

Example

editChannelReported(“PHONE”,capId);

editContactType
Updates Contact Type for all contacts on a record to newtype when the existing Contact Type is
equal to the existingType.

Version

1.5

Parameters

Notes

getApplication(), getParent(), createChild() functions each returns a record ID object that can
be used in the capId parameter

editHouseCount
Updates the record's house count field to numHouse.

Version

1.5

Parameters

Parameter Type Description

channel string Value to change channel reported to.

capId (optional) CapIDModel Record to change value on.

Parameter Type Description

existingType string Existing contact type.

newType string New contact type.

capId (optional) CapIDModel Record ID object.

Parameter Type Description

numHouse string New house count.

capId (optional) CapIDModel Record ID object for record.

Accela Automation Scripting Guide
A: Master Script Function List 162
Returns

Returns true if successful or false if update fails.

editInspectionRequiredFlag
Sets the inspection milestone flag ‘Inspection Required” to Y or N.

Version

1.6

Parameters

editLookup
Attempts to find existing standard choices value called stdValue in the standard choices item
called stdChoice. If found, updates the existing Value Description for stdValue. If stdValue is not
found, adds the new value stdValue with the Value Desc of stdDesc.

Version

1.5

Parameters

editPriority
Updates the record's Priority field to priority.

Version

1.5

Parameter Type Description

inspType string Inspection type to edit.

reqFlag boolean If true, sets the required flag to “Y”, otherwise “N”.

capId (optional) CapIDModel Target record ID.

Parameter Type Description

stdChoice string Name of standard choice.

stdValue string Name of standard choice value.

stdDesc string New standard choice description.

Accela Automation Scripting Guide
A: Master Script Function List 163
Parameters

Returns

Returns true if successful or false if update fails.

editRefLicProfAttribute
Updates the attribute (template data) on a reference licensed professional record.

Version

1.6

Parameters

editReportedChannel
Updates the record's Reported Channel field to reportedChannel.

Version

1.5

Parameters

Returns

Returns true if successful or false if update fails.

Parameter Type Description

priority string New priority.

capId (optional) CapIDModel Record ID object for record.

Parameter Type Description

pLicNum string License number of reference LP.

pAttributeName string Label of the attribute to update.

pNewAttributeV
alue

string New attribute value.

Parameter Type Description

reportedChanne
l

string New reported channel value.

capId (optional) CapIDModel Record ID object for record.

Accela Automation Scripting Guide
A: Master Script Function List 164
editScheduledDate
Edits the schedule date in record detail on the selected record.

Version

1.6

Parameters

editTaskComment
Adds the status comment wfcomment to workflow task wfstr. If wfstr has an existing comment,
the comment is replaced by wfcomment. wfstr does not have to be active. Status date is not
updated. No workflow history record is created.

Version

1.3

Parameters

Notes

If record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr should be edited.

editTaskDueDate
Sets the due date of the workflow task wfstr to wfdate. If wfstr is “*”, sets due dates on all
workflow tasks on the record. No workflow history record is created.

Version

1.3

Parameter Type Description

scheduledDate string New schedule date value.

[capId]
(optional)

CapIDModel Record ID to modify.

Parameter Type Description

wfstr string Workflow task whose comment should be updated.

wfcomment string Comment to be given to wfstr.

wfProcess
(optional)

string Process name of workflow task wfstr.

Accela Automation Scripting Guide
A: Master Script Function List 165
Parameters

Notes

If record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr should be edited.

editTaskSpecific
Updates the value of the task specific info field itemName for workflow task wfName to the
value itemValue. Also updates the internal list of values, so that future criteria/action pairs see
the correct value. If capId is supplied, updates the specified task specific info field on the record
whose record ID object is capId.

Version

1.3

Parameters

email
Sends an email to the email address pToEmail from the email address pFromEmail. The email's
subject line is pSubject and its content is pText.

Version

1.4

Parameter Type Description

wfstr string Workflow task.

wfdate string Due date to be given to wfstr.

wfProcess
(optional)

string Process name of workflow task wfstr.

Parameter Type Description

wfName string Workflow task.

itemName string Task Specific Info field to edit .

itemValue string Value that the task spec info field itemName should be changed
to.

capId (optional) CapIDModel Record ID object for record whose task spec info field
itemName is to be changed to itemValue.

Accela Automation Scripting Guide
A: Master Script Function List 166
Parameters

emailContact
Sends an email to the contact on the current record whose Contact Type is contactType. Uses
the email address in the contact screen. Default contact is “Applicant”.

Version

1.3

Parameters

Example

inspResult.equals("Passed") ^ emailContact("Inspection
Results", "Your inspection " + inspType + " has passed.",
"Contractor")

endBranch
Immediately stops execution of the branch (standard choice) that is currently executing. Script
controls continue executing from the calling standard choice, if any.

Version

1.6

Parameters

None

Example

01 true ^ endBranch()

02 true ^ comment(“this will not execute”)

Parameter Type Description

pToEmail string Email address of recipient.

pFromEmail string Email address of sender.

pSubject string Text that appears in subject line of email.

pText string Text that appears in body of email.

Parameter Type Description

mSubj string Text that appears in subject line of email.

mText string Text that appears in body of email.

contactType
(optional)

string Contact Type that email is sent to. Default is “Applicant”.

Accela Automation Scripting Guide
A: Master Script Function List 167
executeASITable
Executes an ASI table as if it were script commands. No capability for else or continuation
statements. Assumes that there are at least three columns named “Enabled”, “Criteria”, and
“Action”. Replaces token in the controls.

Version

1.5

Parameters

exists
Searches the array eArray for the value eVal. Returns true if the value is found in the array.

Version

1.6

Parameters

Example

Values = new Array(“Apple”,”Pear”,”Banana”);

X = exists(“Apple”,Values);

X is true.

externalLP_CA
Validates a license with the California State License Board and refreshes LP information with
results.

Version

1.6

Parameter Type Description

tableArray array Application specific info table array.

Parameter Type Description

eVal string The search value.

eArray array of strings Potential matches.

Accela Automation Scripting Guide
A: Master Script Function List 168
Parameters

Notes

See the “CSLB Interface using the externalLP_CA function - v3_0.pdf” document for detailed
information.

Example

appsubmitbefore (validates the LP entered, if any, and cancels the event if the LP is inactive,
cancelled, expired, etc.)

cslbMessage =
externalLP_CA(CAELienseNumber,false,false,CAELienseType,n
ull);

appsubmitafter (update all CONTRACTOR LPs on the record and REFERENCE with data from
CSLB. Link the record LPs to REFERENCE. Pop up a message if any are inactive...)

cslbMessage =
externalLP_CA(null,true,true,"CONTRACTOR",capId)

feeAmount
Returns the total amount of the all fees on the record whose fee code is feestr. If optional
fStatus1 … fStatusn parameter(s) are supplied, also checks that feestr has one of the statuses
in fStatus1 … fStatusn.

Version

1.5

Parameter Type Description

licNum string Valid CA license number. Non-alpha, max 8 characters. If null,
the function uses the LPs on the supplied record ID.

rlpType string License professional type to use when validating and creating
new LPs.

doPopulateRef boolean If true, creates/refreshes a reference LP of this number/type.

doPopulateTrx boolean If true, copies create/refreshed reference LPs to the supplied
Cap ID. doPopulateRef must be true for this to work.

itemCap CapIDModel If supplied, licenses on the record are validated. Is also
refreshed if doPopulateRef and doPopulateTrx are true.

Accela Automation Scripting Guide
A: Master Script Function List 169
Parameters

Notes

A fee has one of the following statuses: NEW, INVOICED, VOIDED, CREDITED.

feeAmountExcept
Returns the total amount of the all fees on the record. Ignores fees that are supplied as
additional parameters.

Parameters

feeBalance
Returns the total balance due for all fees on the record whose fee code is feestr. If parameter
feeSchedule is used, retrieves those fees whose schedule is feeSchedule.

Version

1.4

Parameters

feeCopyByDateRange
On the current record, searches for fees in the given date and status criteria, then copies the
fees onto the current record.

Parameter Type Description

feestr string Fee code.

fStatus1 …

fStatusn

(optional)

string List of fee statuses to check for. Enter one or more statuses.

Parameter Type Description

checkCapId CapIDModel Record ID to search.

feeCodeToIgnor
e1…

feeCodeToIgnor
en (optional)

string One or more fee codes to ignore.

Parameter Type Description

feestr string Fee code.

feeSchedule
(optional)

string Fee schedule.

Accela Automation Scripting Guide
A: Master Script Function List 170
Version

1.6

Parameters

feeExists

Version

1.3

Parameters

Returns

Returns true if a fee whose fee code is feestr has been added to the record.

Notes

If optional fStatus1 … fStatusn parameter(s) are supplied, also checks that feestr has one of the
statuses in fStatus1 … fStatusn.

A fee has one of the following statuses: NEW, INVOICED, VOIDED, CREDITED.

Example

To determine if fee “FEE001” has been added and not invoiced:

feeExists("FEE001","NEW")

Parameter Type Description

pStartDate string Starting search date for fee items.

pEndDate string Ending search date for fee items.

feeStatus
(optional)

string Search for fee items of this status.

feeStatus
(optional)

string Search for fee items of this status.

Parameter Type Description

feestr string Fee code of fee to check for.

fStatus1 …

fStatusn

(optional)

string List of fee statuses to check for. Enter one or more statuses.

Accela Automation Scripting Guide
A: Master Script Function List 171
feeGetTotByDateRange

Version

1.3

Parameters

Returns

Returns total amount of fees that were assessed during the date range
pStartDate to pEndDate.

Notes

If optional fStatus1 … fStatusn parameter(s) are supplied, the fee must have one of the statuses
in fStatus1 … fStatusn.

A fee has one of the following statuses: NEW, INVOICED, VOIDED, CREDITED.

Fees are retrieved by their initial assess date, not invoiced date.

feeQty

Version

1.6

Parameters

Returns

On the current record, returns the quantity field of the given fee item.

getAddressConditions
Searches for address conditions by the following parameters. Additionally pType, pStatus,
pDesc, and pImpact can be passed as null values for wildcard searches.

Parameter Type Description

pStartDate string Start of date range, in format MM/DD/YYYY.

pEndDate string End of date range, in format MM/DD/YYYY.

fStatus1 …

fStatusn

(optional)

string List of fee statuses to check for. Enter one or more statuses.

Parameter Type Description

feestr string Fee item to search.

Accela Automation Scripting Guide
A: Master Script Function List 172
Version

2.0

Parameters

Notes

This function can only work well when the Accela Automation site supports Arabic.

getAppIdByASI

Version

1.4

Parameters

Returns

Returns the record number (cap ID string) of the first record whose record type matches ats and
whose application specific info field ASIValue has the value of ASIValue.

getAppIdByName

Version

1.3

Parameter Type Description

pType string Condition type.

pStatus string Condition status.

pDesc string Condition description.

pImpact string Condition impact code.

capId (optional) CapIDModel Record to search.

Parameter Type Description

ASIName string App specific info field name to search for.

ASIValue string App specific info field value to search for. Record ID object for
record whose app spec info field ASIValue is to be changed to
ASIValue.

ats string Four level record type. Must contain 3 slash (/) characters. Do
not add spaces before or after slashes. You can use the
asterisk (*) as a wildcard to match all entries for a given level.

Accela Automation Scripting Guide
A: Master Script Function List 173
Parameters

Returns

Returns the cap ID string of the first record whose record type begins with gaGroup / gaType
and whose record name is gaName.

Notes

The parameter gaType is the 2nd value in the 4 level record type.

getApplication

Version

1.3

Parameters

Returns

Returns the record ID object for record applicationNumber that can be used by other functions.

getAppSpecific

Version

1.3

Parameters

Returns

Returns the value of the application spec info field itemName. If you provide capId, returns the
value of itemName on the record whose record ID object is capId.

Parameter Type Description

gaGroup string Record group.

gaType string Record type.

gaName string Record name.

Parameter Type Description

applicationNum
ber

string Application # (B1_ALT_ID).

Parameter Type Description

itemName string Application Specific Info field to get.

capId (optional) CapIDModel Record ID object for record.

Accela Automation Scripting Guide
A: Master Script Function List 174
getCapByAddress

Version

1.4

Parameters

Returns

Returns the first record having the same address as the current record and whose record type
matches ats, as a record ID object. If the search does not return any records, the function does
not return any value.

Notes

The function matches addresses by Street # (start), Street Name, Street Direction, Street Suffix,
and Zip. The function can return the current record.

getCAPConditions
Searches for record conditions by the following parameters. Additionally you can pass pType,
pStatus, pDesc, and pImpact as null values for wildcard searches.

Version

2.0

Parameters

Notes

This function can only work well when the Accela Automation site supports Arabic.

Parameter Type Description

ats string Four level record type. Must contain 3 slash (/) characters. Do
not add spaces before or after slashes. You can use the
asterisk (*) as a wildcard to match all entries for a given level.

Parameter Type Description

pType string Condition type.

pStatus string Condition status.

pDesc string Condition description.

pImpact string Condition impact code.

capId (optional) CapIDModel Record to search.

Accela Automation Scripting Guide
A: Master Script Function List 175
getCapId
Gets the ID of the record associated with the event.

getCapsWithConditionsRelatedByRefContact
Searches for records that share the same reference contact and same record condition, and
returns the result as an array of CapIDModels.

Version

2.0

Parameters

getChildren
If you use the skipChildCapId parameter, the function excludes any child record whose record
ID object is skipChildCapId.

Version

1.4

Parameters

Parameter Type Description

itemCap string The capIDModel of record.

capType string Application type.

pType string Condition type, leave null for wildcard search.

pStatus string Condition status.

pDesc string Condition description.

pImpact string Condition impact code.

Parameter Type Description

pCapType string Four level record type. Must contain 3 slash (/) characters. Do
not add spaces before or after slashes. You can use the
asterisk (*) as a wildcard to match all entries for a given level.

pParentCapId
(optional)

CapIDModel Record ID object for parent record. Use null if skipChildCapId
parameter is used.

skipChildCapId
(optional)

CapIDModel Record ID object of child record to exclude.

Accela Automation Scripting Guide
A: Master Script Function List 176
Returns

Returns all child records whose record type matches pCapType, as an array of record ID
objects. If the pParentCapId parameter is used, returns child records of the record whose
record ID object is pParentCapId.

Notes

If the skipChildCapId parameter is used, the function excludes any child record whose record ID
object is skipChildCapId.

See also

childGetByCapType

getChildTasks

Version

1.6

Parameters

Returns

Returns an array of taskScriptModel objects, which represent the child tasks (sub process) of
the criteria task.

getConditions
Searches for cap conditions, address conditions, contact conditions, parcel conditions, and
licensed professional conditions by the following parameters. Additionally pType, pStatus,
pDesc, and pImpact can be passed as null values for wildcard searches.

Version

2.0

Parameters

Parameter Type Description

taskName string Name of criteria parent task.

capId (optional) CapIDModel Record to search.

Parameter Type Description

pType string Condition type.

pStatus string Condition status.

pDesc string Condition description.

Accela Automation Scripting Guide
A: Master Script Function List 177
Notes

This function can only work well when the Accela Automation site supports Arabic.

getContactArray
Retrieves field values and customizes attribute values for all contacts and returns them as an
array of associative arrays. Each element in the outer array contains an associative array of
values for one contact. Each element in each inner associative array is a different field.

Version

2.0

Parameters

Notes

The following fields are retrieved:

pImpact string Condition impact code.

capId (optional) CapIDModel Record to search.

Parameter Type Description

capIdFrom
(optional)

CapIDModel Record ID object for source application.

Contact Field Element Name

First Name firstName

Middle Name middleName

Last Name lastName

Business Name businessName

Phone 1 phone1

Phone 2 phone2

Contact Type contactType

Relationship relation

Sequence Number contactSeqNumber

Reference Contact ID refSeqNumber

E-mail email

Address Line 1 addressLine1

Parameter Type Description

Accela Automation Scripting Guide
A: Master Script Function List 178
All custom attributes are also added to the associative array, where the element name is the
attribute name (in upper-case). Note that the attribute name may not be the same as the
attribute label.

If the parameter capIdFrom is used, function retrieves contacts from the record whose record ID
object is capIdFrom.

getContactConditions
Searches for contact conditions by the following parameters. Additionally pType, pStatus,
pDesc, and pImpact can be passed as null values for wildcard searches.

Version

2.0

Parameters

Notes

This function can only work well when the Accela Automation site supports Arabic.

getCSLBInfo
Selects the first licensed professional on the record and retrieves its data from the California
State License Board (CSLB). If doWarning is true, shows a warning message if the license has
expired. If doPop is true, updates the record's licensed professional with data from CSLB.

Address Line 2 addressLine2

City city

State state

Zip Code zip

Fax fax

Notes notes

Country/Region country

Full Name fullName

Parameter Type Description

pType string Condition type.

pStatus string Condition status.

pDesc string Condition description.

pImpact string Condition impact code.

capId (optional) CapIDModel Record to search.

Accela Automation Scripting Guide
A: Master Script Function List 179
Version

1.4

Parameters

Returns

Returns false if the record has no licensed professional, if the license cannot be found at CSLB,
or if any error is encountered.

Notes

The following fields are updated:

 Business Name

 Phone Number

 Address Line 1

 Issued Date

 Address Line 2

 Expiration Date

 City

 State

 Zip

getDepartmentName

Version

1.4

Parameters

Returns

Returns the department of the user whose ID is username.

Parameter Type Description

doPop boolean Use true if the record's license professional must be updated
with data from the California State License Board (CSLB);
otherwise, use false.

doWarning boolean Use true if warning message should appear if license has
expired; otherwise, use false.

Parameter Type Description

username string User's ID.

Accela Automation Scripting Guide
A: Master Script Function List 180
getGISBufferInfo

Version

1.4

Parameters

Returns

Returns an array of associative arrays. Each element in the outer array is a GIS object (from the
indicated layer) within the buffer from the record's GIS object. Each element in the inner
associative array is a requested attribute.

Example

x =
getGISBufferInfo("NewtonCounty","Parcels","50","NAME1","T
OTACRES");

x[0]["TOTACRES"] = 0.46
x[0]["NAME1"] = "JENNINGS DEMETRIA C"
x[1]["TOTACRES"] = 0.46
x[1]["NAME1"] = "SIMMS ROCK & VALARIE"
x[2]["TOTACRES"] = 0.46
x[3]["NAME1"] = "PAUL NEVILLE & MARGARET"

getGISInfo
Use with all events (and master scripts) except ApplicationSubmitBefore.

Version

1.4

Parameter Type Description

svc string GIS service name.

layer string GIS layer on which the function creates buffer zones around the
input GIS object.

numDistance integer The distance (in feet) around the to-be-buffered GIS object in
which buffer zones are created on the specified layer.

A positive distance means creating buffers outside the GIS
object while a negative distance means creating buffers inside
the GIS object. When the buffer distance is negative, Accela
GIS checks whether the to-be-buffered GIS object is a point,
line, or polygon. If it is a point or line, Accela GIS changes the
negative buffer distance to 0.01 to avoid the script error.

attribute1…attrib

uten (optional)

strings Additional attributes of the GIS layer to retrieve.

Accela Automation Scripting Guide
A: Master Script Function List 181
Parameters

Returns

Returns the attribute value for attributename in the GIS layer for the last GIS
object on the record.

getGISInfoArray

Version

1.6

Parameters

Returns

Similar to getGISInfo, except it returns an array of values for the given attribute, instead of the
first value found.

getGuideSheetObjects

Version

2.0

Parameters

Parameter Type Description

svc string GIS service name.

layer string GIS layer.

attributename string Name of attribute to retrieve.

Parameter Type Description

svc string GIS service name.

layer string GIS layer.

attributename string Name of attribute to retrieve.

Parameter Type Description

inspId long Sequence number of the inspection that contains the
guidesheet objects to retrieve.

capId (optional) CapIDModel Record Id to search.

Accela Automation Scripting Guide
A: Master Script Function List 182
Returns

Returns an array of guideSheetObject objects that represent the guidesheet data on the
inspection.

Notes

See the guideSheetObject for more information

getInspector

Version

1.3

Parameters

Returns

Returns the user ID of the inspector assigned to inspection insp2Check whether scheduled or
completed.

Notes

If more than one insp2Check is on the record, the first inspection found is selected, which may
or may not be the insp2Check with the earliest inspection date.

getLastInspector

Version

1.4

Parameters

Returns

Returns the user ID of the last inspector to result the inspection insp2Check.

Parameter Type Description

insp2Check inspDesc Inspection description.

Parameter Type Description

insp2Check string Inspection description.

Accela Automation Scripting Guide
A: Master Script Function List 183
getLastScheduledInspector

Version

1.6

Parameters

Returns

Returns the user ID of the last inspector to be schedule on the inspection insp2check

getLicenseConditions
Searches for licensed professional conditions by the following parameters. Additionally pType,
pStatus, pDesc, and pImpact can be passed as null values for wildcard searches.

Version

2.0

Parameters

Notes

This function can only work well when the Accela Automation site supports Arabic.

getLicenseProfessional

Version

1.6

Parameters

Parameter Type Description

Insp2Check string Inspection description.

Parameter Type Description

pType string Condition type.

pStatus string Condition status.

pDesc string Condition description.

pImpact string Condition impact code.

capId (optional) CapIDModel Record to search.

Parameter Type Description

itemcapId CapIDModel Record ID to use.

Accela Automation Scripting Guide
A: Master Script Function List 184
Returns

Returns an array of LicensedProfessional objects that represent all LPs on the specified record.

getParcelConditions
Searches for parcel conditions by the following parameters. Additionally pType, pStatus, pDesc,
and pImpact can be passed as null values for wildcard searches.

Version

2.0

Parameters

Notes

This function can only work well when the Accela Automation site supports Arabic.

getParent

Version

1.3

Parameters

None

Returns

Returns the record ID object for the first parent of the current record.

getParents

Version

1.5

Parameter Type Description

pType string Condition type.

pStatus string Condition status.

pDesc string Condition description.

pImpact string Condition impact code.

capId (optional) CapIDModel Record to search.

Accela Automation Scripting Guide
A: Master Script Function List 185
Parameters

Returns

Returns all parents on the current record in a record ID object array. If itemCap parameter is
passed, only returns parent records whose record type matches the itemCap parameter string
pattern.

getRefLicenseProf

Version

1.6

Parameters

Returns

Returns a reference licensed professional object for the LP that matches the state license
number value

getRelatedCapsByAddress

Version

1.4

Parameters

Returns

Returns all records having the same address as the current record and whose record type
matches ats, as an array of record ID objects. If the function does not find any related records,
the function does not return any value.

Parameter Type Description

itemCap
(optional)

string Four level record type. Must contain 3 slash (/) characters. Do
not add spaces before or after slashes. You can use the
asterisk (*) as a wildcard to match all entries for a given level.

Parameter Type Description

refstlic string State license number to search for.

Parameter Type Description

ats string Four level application type. Must contain 3 slash (/) characters.
Do not add spaces before or after slashes. You can use the
asterisk (*) as a wildcard to match all entries for a given level.

Accela Automation Scripting Guide
A: Master Script Function List 186
Notes

The function matches addresses by Street # (start), Street Name, Street Direction, and Street
Suffix. The function does not include the current record in the returned array. Retrieve records
do not have to be a parent or child of the current record.

getRelatedCapsByParcel

Version

1.4

Parameters

Returns

Returns all records having the same parcel as the current record and whose record type
matches ats, as an array of record ID objects. The function does not include the current record
in the returned array. If the function does not find any related records, the function does not
return any value.

Notes

 Records retrieved do not have to be a parent or child of the current record.

getReportedChannel

Version

1.5

Parameters

Returns

Returns the value of the Reported Channel field as a string. If null, the function returns an empty
string.

Parameter Type Description

ats string Four level record type. Must contain 3 slash (/) characters. Do
not add spaces before or after slashes. You can use the
asterisk (*) as a wildcard to match all entries for a given level.

Parameter Type Description

capId (optional) CapIDModel Record ID object for application.

Accela Automation Scripting Guide
A: Master Script Function List 187
getScheduledInspId

Version

1.6

Parameters

Returns

Returns the internal sequence number for the inspection record that matches the description.
Only returns values for scheduled inspections, not resulted inspections.

Notes

You can use the returned sequence number with other functions, such as
autoAssignInspection.

getShortNotes

Version

1.5

Parameters

Returns

Returns the value of the Short Notes field as a string. If null, the function returns an empty
string.

getTaskDueDate

Version

1.6

Parameters

Parameter Type Description

insp2Check string Inspection description.

Parameter Type Description

capId (optional) CapIDModel Record ID object for record.

Parameter Type Description

wfstr string Workflow task name.

wfProcess
(optional)

string Workflow process name.

Accela Automation Scripting Guide
A: Master Script Function List 188
Returns

Returns the due date of the requested workflow task on the current record.

Notes

If a record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr to check.

wfProcess is R1_PROCESS_CODE in the GPROCESS and SPROCESS tables. wfProcess is
normally in uppercase.

getTaskStatusForEmail
This function retrieves all completed tasks on workflow stask and returns their task name,
status, and comments (if any) in the following format:

 Task Name: {task name}

 Task Status: {task status}

 Task Comments: {status comments}

The function repeats the previous block for each completed task.

Version

1.3

Parameters

hasPrimaryAddressInCap
Checks whether a record has a primary address.

Version

2.0

Parameters

insertSubProcess
Dynamically adds a workflow process as a subprocess to an existing task.

Parameter Type Description

stask string Process name of workflow.

Parameter Type Description

capID CapIDModel Record ID object.

Accela Automation Scripting Guide
A: Master Script Function List 189
Version

2.0

Parameters

Example

insertSubProcess(“Reviews”,”PLAN_REVIEW_VER1”,true);

inspCancelAll
Cancels all scheduled and incomplete inspections on the current record.

Version

1.4

Parameters

None

Returns

Returns true if at least one inspection is cancelled; otherwise, returns false.

invoiceFee
Invoices all assessed fees with fee code of fcode and fee period of fperiod.

Version

1.5

Parameters

Parameter Type Description

taskName string Name of the task that is the parent for the sub-process.

process string Name of the reference workflow process that the function adds
a subprocess.

completeReqd boolean True if you must complete the subprocess before you promote
the parent task. Otherwise, false.

itemCap
(optional)

CapIDModel Optional target capId.

Parameter Type Description

fcode string Fee code of the fee to invoice.

fperiod string Fee period of the fee to invoice.

Accela Automation Scripting Guide
A: Master Script Function List 190
Returns

Returns true if the function finds the assessed. Otherwise, returns false.

isScheduled

Version

1.3

Parameters

Returns

Returns true for scheduled or resulted inspections inspType for the current record.

Notes

To identify a scheduled, but not yet resulted inspection, use the checkInspectionResult function
and use Scheduled for the insp2Result parameter.

isTaskActive

Version

1.3

Parameters

Returns

Returns true if workflow task wfstr is active, or false if it is not.

If used with the WorkflowTaskUpdateAfter event, this function returns true if wfstr becomes
active as a result of the WorkflowTaskUpdateAfter event. The function returns false if wfstr
becomes inactive as a result of the WorkflowTaskUpdateAfter event.

Notes

If record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr to check.

Parameter Type Description

inspType string Inspection description.

Parameter Type Description

wfstr string Workflow task name.

wfProcess
(optional)

string Workflow process name.

Accela Automation Scripting Guide
A: Master Script Function List 191
wfProcess is R1_PROCESS_CODE in the GPROCESS and SPROCESS tables. wfProcess is
normally in uppercase.

isTaskComplete

Version

1.3

Parameters

Returns

Returns true for a completed workflow task wfstr. Otherwise, returns false.

If used with the WorkflowTaskUpdateAfter event, this function returns true if wfstr becomes
completed as a result of the WorkflowTaskUpdateAfter event.

Notes

If record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr to check.

wfProcess is R1_PROCESS_CODE in the GPROCESS and SPROCESS tables. wfProcess is
normally in uppercase.

isTaskStatus

Version

1.3

Parameters

Returns

Returns true if workflow task wfstr has the current status of wfstat, or false if it does not.
Returns false if the function does not fine wfstr.

Parameter Type Description

wfstr string Workflow task name.

wfProcess
(optional)

string Workflow process name.

Parameter Type Description

wfstr string Workflow task name.

wfstat string Workflow status.

wfProcess
(optional)

string Workflow process name.

Accela Automation Scripting Guide
A: Master Script Function List 192
Notes

If record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr to check.

wfProcess is R1_PROCESS_CODE in the GPROCESS and SPROCESS tables. wfProcess is
normally in uppercase.

jsDateToASIDate
Converts the JavaScript Date object to a string, with a zero pad date format, that you can use in
ASI, TSI, and ASI Table date fields.

Version

1.5

Parameters

jsDateToMMDDYYYY
Converts the JavaScript Date object pJavaScriptDate to a string in the format MM/DD/YYYY.

Version

1.4

Parameters

Returns

Returns the date as a string in the format MM/DD/YYYY.

Notes

Use this function to display a JavaScript date in the format MM/DD/YYYY. Do not use the result
of this function directly to compare against another date.

licEditExpInfo
Changes the record’s expiration status to pExpStatus and expiration date to pExpDate.

Version

1.4

Parameter Type Description

dateValue JavaScript date JavaScript date object.

Parameter Type Description

pJavaScriptDate JavaScript date JavaScript date object.

Accela Automation Scripting Guide
A: Master Script Function List 193
Parameters

Notes

If pExpStatus is null, expiration status does not change. If pExpDate is null, expiration date does
not change. Use this function with license records only, that is the record type begins with
Licenses.

pExpDate can be in YYYY-MM-DD or MM/DD/YYYY format.

Script throws an error if record does not have Renewal Info.

loadAddressAttributes
Populates thisArr as a associate array of address attributes and address values based on the
address associated with the record.

Version

1.6

Parameters

loadAppSpecific[4ACA]
Retrieves all application specific info fields and adds them to the associative array thisArr.

Version

1.4

Parameters

Parameter Type Description

pExpStatus string Expiration status. Use null if you only edit expiration date.

pExpDate string Expiration date. Use null if you only edit expiration status.

Parameter Type Description

thisArr array Target array of address attributes.

capId (optional) CapIDModel Record ID to search.

Parameter Type Description

thisArr array Associative array.

capId (optional) CapIDModel ID for record from where to copy all app spec info fields.

Accela Automation Scripting Guide
A: Master Script Function List 194
Notes

The element name is the application specific info field name and the element value is the field
value. If the user configurable variable useAppSpecificGroupName on the master script
equals true, the function appends group name to the beginning of the field name with a period,
that is CONSTRUCTION_INFO.Construction Type. The function does not retrieve application
specific information table data.

If the function uses the capId parameter, the function retrieves application info fields from the
record whose record ID object is capId.

The loadAppSepecific4ACA performs the same function as loadAppSpecific but it specially
works with Accela Citizen Access pageflow scripts.

loadASITable

Version

1.6

Parameters

Returns

Returns an array of associate arrays that contain objects representing the contents of the ASI
table for the selected record.

Notes

The underlying object is an “asiTableValObj” that contains three properties:

 fieldValue = value of the table

 columnName = name of the column for this value

 readOnly = Y for a read only field, N if not.

Example

myTable = loadASITable(“EXAMPLE TABLE”)

firstRow = myTable[0];

columnA = firstRow[“Column A”]

columnB = firstRow[“Column B”]

comment(“value of column a is : “ + columnA.fieldValue)

comment(“column a read only property is : “ +
columnA.readOnly)

The fieldValue property of the asiTableValObj object is the default property, so the following also
works:

Parameter Type Description

tname string Name of ASI table to load.

capId (optional) CapIDModel Record ID from which to load the table.

Accela Automation Scripting Guide
A: Master Script Function List 195
comment(“value of column a is : “ + columnA);

loadASITables[4ACA][Before]
Similar to the loadASITable function, except the function creates global variables for each ASI
table on the requested record.

Version

1.6

Parameters

Notes

You can edit the names of the tables remove whitespace and leading digits, so that they
become appropriate JavaScript variables.

Example

loadASITables();

if (typeof(PROPERNAMES) == “object”)

comment(“number of rows in the ‘PROPER NAMES’ table : “ +
PROPERNAMES.length)

Variables are not created for tables that do not have any data, so you must first use the
JavaScript typeof operator to check for the presence of the table variable, as shown in the
previous example.

By default, all master scripts execute loadASITables.

The loadASITables4ACA performs the same function as loadASITables but it specially works
with Accela Citizen Access pageflow scripts.

The loadASITablesBefore is an alternate version of this function that works specifically with the
ApplicationSubmitBefore event.

loadFees

Version

1.5

Parameters

Parameter Type Description

capId (optional) CapIDModel Record ID from which to load the table.

Parameter Type Description

capId (optional) CapIDModel Record ID object of record from which to load fees.

Accela Automation Scripting Guide
A: Master Script Function List 196
Returns

Retrieves all assessed fees for the record capId and returns them as an array of associative
arrays.

Notes

Each element in the outer array contains an associative array of values for one fee. Each
element in each inner associative array is a different field. The function retrieves the following
fields:

loadGuideSheetItems

Version

1.6

Fee Field Element Name

Sequence Num sequence

Fee Code code

Description description

Unit unit

Amount amount

Amount Paid amountPaid

Applied Date applyDate

Effective Date effectDate

Status status

Received Date redDate

Fee Period period

Display Order display

Account Code 1 accCodeL1

Account Code 2 accCodeL2

Account Code 3 accCodeL3

Fee Formula formula

Sub Group subGroup

Calculation Flag calcFlag

Accela Automation Scripting Guide
A: Master Script Function List 197
Parameters

Returns

Returns an associative array of guidesheet items from the indicated inspection.

Example

gsArray = loadGuideSheetItems(234323);

comment(gsArray[“Privacy Violation”])

Displays the value of the Privacy Violation guidesheet item.

loadParcelAttributes
Retrieves all parcel fields (including custom attributes) and adds them to the associative array
thisArr.

Version

1.4

Parameters

Notes

The element name is the field name (prefixed with "ParcelAttribute.") and the element value is
the field value. The function includes the following standard parcel fields:

Parameter Type Description

inspId long Inspection sequence number to load.

capId (optional) CapIDModel Record to search.

Parameter Type Description

thisArr array Associative array.

capId (optional) CapIDModel Record ID object for the record from where to copy parcel
attributes.

ParcelAttribute.Block ParcelAttribute.LegalDesc

ParcelAttribute.Book ParcelAttribute.Lot

ParcelAttribute.CensusTract ParcelAttribute.MapNo

ParcelAttribute.CouncilDistrict ParcelAttribute.MapRef

ParcelAttribute.ExemptValue ParcelAttribute.ParcelStatus

ParcelAttribute.ImprovedValue ParcelAttribute.SupervisorDistrict

ParcelAttribute.InspectionDistrict ParcelAttribute.Tract

ParcelAttribute.LandValue ParcelAttribute.PlanArea

Accela Automation Scripting Guide
A: Master Script Function List 198
If the record has multiple parcels, the function only retrieves fields for the last parcel. If the
function uses the capId parameter, the function retrieves parcel fields from the record whose
record ID object is capId.

loadTasks

Version

1.3

Parameters

Returns

Returns an array of workflow task objects for the record Itcapidstr.

loadTaskSpecific
Retrieves all task specific info fields and adds them to the associative array thisArr.

Version

1.4

Parameters

Notes

The element name is the task specific info field name and the element value is the field value. If
the user configurable variable useTaskSpecificGroupName on the master script equals true,
the function prepends the workflow process code and workflow task name to the field name, for
example, BLDGPROCESS.Application Submittal.Date Received.

If the function uses the capId parameter, the function retrieves task specific info fields from the
record whose record ID object is capId.

logDebug
Displays debug information, depending on the showDebug global variable setting.

Parameter Type Description

ltcapidstr string Application # (B1_ALT_ID).

Parameter Type Description

thisArr array Associative array.

capId (optional) CapIDModel Record ID object for the record from where to copy all task spec
info fields.

Accela Automation Scripting Guide
A: Master Script Function List 199
Version

1.6

Parameters

Notes

debugLevel overrides this setting for this message only.

debugLevel = false // no output

debugLevel = 1 // screen output

debugLevel = 2 // output to biz server log

debugLevel = 3 // output to screen and biz log

lookup
Looks up valueName in standard choices item stdChoice, and returns its value description.
Essentially uses standard choices as a lookup table.

Version

1.3

Parameters

Returns

Returns the Value Desc corresponding to the standard choices value stdValue in the standard
choices item stdChoice. If the function does not find stdValue, returns undefined.

lookupDateRange
Matches dateValue against a series of dates in the standard choices called stdChoiceEntry.

Version

1.4

Parameter Type Description

dstr string Value to display on the debug window.

debugLevel
(optional)

Debug content destination.

Parameter Type Description

stdChoice string Standard choices item name.

stdValue string Standard choices value.

Accela Automation Scripting Guide
A: Master Script Function List 200
Parameters

Returns

If dateValue falls after date 1 but before or on date 2, returns the value following the caret (^) on
date 1's right. If the function uses the valueIndex parameter, returns the value immediately after
the valueIndex'th caret (^), following the matching date.

Notes

Set up the standard choices lookup table as follows:

 Value column = Four digit incremental index. Must be left zero padded to four digits. Entire
table must be consecutive.

 Value Desc column = at least two values separated with the caret (^) symbol. Returns the
first value as the effective date (MM/DD/YYYY format). Returns the remaining values by the
function.

Examples

lookupDateRange("test date lookup","5/5/2002") returns 33333

lookupDateRange("test date lookup","1/5/2000",2) returns 12222

lookupDateRange("test date lookup","1/1/2010") returns 44444

lookupDateRange("test date lookup","1/1/1999") returns undefined since there
is no entry effective for that date.

lookupDateRange("test date lookup","1/5/2000",3) returns undefined since
there are not 3 values.

Sample script controls:

Parameter Type Description

stdChoiceEntry string Item Name of standard choices used as lookup table.

dateValue string Date that determines which row to return. Use string in format
MM/DD/YYYY, e.g. "07/21/2000".

valueIndex
(optional)

integer Determines the value to return. Defaults to 1, the first value.

Accela Automation Scripting Guide
A: Master Script Function List 201
01 appMatch("Building/Residential/SFD/*") ^lookupIndex=1
02 appMatch("Building/Residential/Duplex/*") ^
lookupIndex = 2
03 true ^ addFee("FEECODE","FEESCHED","FEEPERIOD",
lookupDateRange("test date lookup", filedate,
lookupIndex), "Y")

lookupFeesByValuation
Looks up the Value Desc for the stdChoiceValue Value in the standard choices called
stdChoiceEntry.

Version

1.4

Parameters

Notes

Compares capval against the series of numbers in the Value Desc. If valueIndex is null or 1,
uses the value following the 1st pipe (|) on the matching number's right to calculate the base
fee. If valueIndex is 2, usrs the value following the 2nd pipe (|) on the matching number's right to
calculate an add on fee.

Set up the standard choices lookup table as follows:

 Value column = Lookup value.

 Value Desc column = one or more 3-number series, where

• 1st number = number to compare compareValue against

• 2nd number = base fee

• 3rd number = used to calculate add-on fee

Use a pipe(|) to separate each number. Use a caret(^) to separate each 3-number series.

Parameter Type Description

stdChoiceEntry string Item name of standard choices used as lookup table.

stdChoiceValue string Standard choices value.

capval number Number value (e.g. valuation) to compare.

valueIndex
(optional)

integer Determines which value to return. Defaults to 1, the first value.

Accela Automation Scripting Guide
A: Master Script Function List 202
Example

06 true ^ theBase =
lookupFeesByValuation("PlanCheck2007","A-1-Group2",5600)

07 true ^ theAddOn =
lookupFeesByValuation("PlanCheck2007","A-1-
Group2",5600,2)

08 true ^ newTotal = newTotal +(parseFloat(theBase)
+parseFloat(theAddOn))

lookupFeesByValuationSlidingScale
Similar to the lookupFeesByValuation function, but introduces another element in the standard
choice tables which serves as a divisor for the capval.

Version

1.6

Parameters

Parameter Type Description

stdChoiceEntry string Item name of standard choices used as lookup table.

stdChoiceValue string Standard choices value.

capval number Number value (e.g. valuation) to compare.

valueIndex
(optional)

integer Determines which value to return. Defaults to 1, the first value.

Accela Automation Scripting Guide
A: Master Script Function List 203
Notes

Set up the standard choices lookup table as follows:

 Value column = Lookup value.

 Value Desc column = one or more 3-number series, where

• 1st number = number to compare compareValue against

• 2nd number = divisor (e.g., 100, 1000, etc.)

• 3rd number = base fee

• 4th number = used to calculate add-on fee

Use a pipe(|) to separate each number. Use a caret(^) to separate each 4-number series.

loopTask

Version

1.3

Parameters

Notes

Updates the workflow task wfstr as follows:

 Status = wfstat

 Status Date = current date

 Status Comment = wfcomment

 Action By = current user

Closes task wfstr and promotes workflow to the loop task.

If record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr to check.

Parameter Type Description

wfstr string Workflow task name.

wfstat string Status to assign.

wfcomment string Comment to add.

wfnote string Note to add to the workflow task.

wfProcess
(optional)

string ID (R1_PROCESS_CODE) for the process that the task
belongs to. Required for multi-level workflows.

Accela Automation Scripting Guide
A: Master Script Function List 204
matches

Version

1.3

Parameters

Returns

Returns true if the function finds value in the m1 [, … mn] list. Function looks for an exact, case-
sensitive match. Returns false if the function finds nothing in the m1 [, … mn] list that matches
value.

nextWorkDay

Version

1.4

utility

Get

Parameters

Returns

Returns the first agency work day following the current date, by checking the Agency Workday
calendar defined for the agency. If the function uses the td parameter, returns the first agency
work day following td. The date returned is a string in the format MM/DD/YYYY.

Notes

You can only use this function with Accela Automation 6.3.2 and later.

openUrlInNewWindow
Opens a new browser window and shows the web page whose URL is myurl.

Parameter Type Description

eVal string String to match.

argList strings The m1 [, … mn] list. List of values to test for a match. Enter
any number of values, each enclosed in double quotes and
separated by comma.

Parameter Type Description

td (optional) string Date, in format “MM/DD/YYYY” (or any string that converts to a
JavaScript date).

Accela Automation Scripting Guide
A: Master Script Function List 205
Version

1.4

Parameters

Notes

Either user-configurable variable showDebug or showMessage must be true for this function
to work.

parcelConditionExists

Version

1.4

Parameters

Returns

Returns true if any parcel has a condition of type condtype; otherwise, returns false.

parcelExistsOnCap

Version

1.6

Parameters

Returns

Returns true if a parcel exists on the record

paymentByTrustAccount
This function uses the trust account associated with a record to pay for a specific fee item.

Parameter Type Description

myurl string URL of web page to open.

Parameter Type Description

condtype string Condition type.

Parameter Type Description

capId (optional) CapIDModel Record ID to check.

Accela Automation Scripting Guide
A: Master Script Function List 206
Version

2.0

Parameters

Notes

The logic behind the function is:

 Retrieves the primary trust account on the record.

 Initiates payment from this trust account for the amount of the fee.

 If payment successful, applies payment to the fee.

 Generates a receipt for the payment.

 Returns false if any of the previous fails. Otherwise returns true.

 You can only pay invoiced fees.

Example

feeSeq = addFee(“C”,”F”,”P”,20,”Y”);

paymentByTrustAccount(feeSeq);

paymentGetNotAppliedTot
Gets the total amount of unapplied payments on the current record (capId), as a float number.

Version

2.0

Parameters

None

proximity

Version

1.3

Parameter Type Description

fSeqNbr long Sequence number of the fee item to be paid.

itemCap
(optional)

CapIDModel Optional target record ID.

Accela Automation Scripting Guide
A: Master Script Function List 207
Parameters

Returns

Returns true if the parcel on the current record is within numDistance feet (or other unit
specified) of the object in layer; otherwise, returns nothing.

proximityToAttribute

Version

1.4

Parameters

Returns

Returns true if the record has a GIS object in numDistance proximity that contains an attribute
called attributeName with the value attributeValue.

Example

proximityToAttribute("flagstaff","Parcels","50",
"feet","BOOK","107") ^ DoStuff...

Parameter Type Description

svc string GIS service name.

layer string GIS layer, that is, the object that the function is testing proximity
to.

numDistance integer Distance of parcel, associated with the current record, to the
object that you identify with the layer parameter.

unit (optional) string Unit for numDistance measurement. Optional. Default is feet.

Parameter Type Description

svc string GIS service name.

layer string GIS layer, i.e., object that function is testing proximity to.

numDistance integer Distance of parcel, associated with the current record, to the
object that you identify with the layer parameter.

distanceType string Unit for distance measurement.

attributeName string Attribute name.

attributeValue string Attribute value.

Accela Automation Scripting Guide
A: Master Script Function List 208
refLicProfGetAttribute

Version

1.4

Parameters

Returns

Returns the value of the custom attribute named pAttributeName for the reference Licensed
Professional whose license # is pLicNum.

Notes

Note that pAttributeName is not necessarily the same as the attribute label. You can find the
attribute name in the attribute’s configuration screen.

If the function does not find a reference Licensed Professional with license # of pLicNum, the
function returns NO LICENSE FOUND. If the function does not find the attribute
pAttributeName, the function returns ATTRIBUTE NOT FOUND.

refLicProfGetDate

Version

1.4

Parameters

Returns

Returns the date specified by pDateType for the reference Licensed Professional whose license
is pLicNum. The date returned is a JavaScript Date object.

Notes

The table below shows the date returned for each pDateType parameter value.

Parameter Type Description

pLicNum string State license number.

pAttributeName string Custom attribute name.

Parameter Type Description

pLicNum string State license number.

pDateType string Date field to retrieve. Options (use one): EXPIRE, ISSUE,
RENEW, INSURANCE, BUSINESS.

dateType Date Field Value Returned

EXPIRE License Expiration Date

Accela Automation Scripting Guide
A: Master Script Function List 209
If the function does not find a reference Licensed Professional with license # of pLicNum, the
function returns NO LICENSE FOUND. If the function does not find a date, the function returns
NO DATE FOUND. If pLicNum is empty, the function returns INVALID PARAMETER. The
function skips disabled reference Licensed Professional.

To format a JavaScript Date as a MM/DD/YYYY string, use function jsDateToMMDDYYYY.

removeAllFees
Removes all un-invoiced fees on the record

Version

1.6

Parameters

removeASITable
Removes all entries for ASI Table Name

Version

1.5

Parameters

removeCapCondition
Deletes the condition whose type is cType and name is cDesc from the current record. If you
use the optional parameter capId, the function deletes the condition from the record capId.

ISSUE License Issue Date

RENEW License Last Renewal Date

INSURANCE Insurance Expiration Date

BUSINESS Business License Expiration Date

Parameter Type Description

itemCap CapIDModel The capIDModel of record.

Parameter Type Description

tableName string Table name to remove.

capId (optional) CapIDModel Record ID object for record.

Accela Automation Scripting Guide
A: Master Script Function List 210
Version

1.5

Parameters

removeFee
Deletes all assessed fees with the fee code of fcode and fee period of fperiod. The function
does not delete invoiced fees.

Version

1.4

Parameters

removeParcelCondition
Removes the condition whose name is cDesc and type is cType from the reference parcel
whose number is parcelNum. If you set the parameter parcelNum to null, the function removes
any condition, whose name is cDesc and type is cType, from all parcels on the record.

Version

1.4

Parameters

removeTask
Dynamically edits the workflow on the indicated record by removing the task.

Parameter Type Description

cType string Condition type.

cDesc string Condition name.

capId (optional) CapIDModel Record ID object.

Parameter Type Description

fcode string Fee code of the fee to delete.

fperiod string Fee period of the fee to be delete.

Parameter Type Description

parcelNum string Parcel number from which to remove the condition.

cType string Condition type.

cDesc string Condition name.

Accela Automation Scripting Guide
A: Master Script Function List 211
Version

2.0

Parameters

replaceMessageTokens
Used for formatting emails, this function parses through the string, replacing tokens with
variable values.

Version

1.6

Parameters

Notes

The function replaces values inside pipes (e.g. |capIdString|) by their script values.

The function replaces values inside curly brackets (e.g. {ASIVal}) by ASI values.

Example

EmailContent = “Thank you for submitting |capIDString| on
|fileDate|. The balance due is |balanceDue|. The ASI
field is {ASI Field}”

EmailSend = replaceMessageTokens(EmailContent);

This function can access any variable that the script uses.

resultInspection
This function posts a result for a scheduled inspection. If no scheduled inspection exists (of that
type for the record) then the function does nothing.

Version

1.6

Parameter Type Description

targetCapId CapIDModel Record Id to edit.

removeTaskName string Name of the task to remove.

wfProcess (optional) string Workflow process name.

Parameter Type Description

m string String to do the token replacement.

Accela Automation Scripting Guide
A: Master Script Function List 212
Parameters

scheduleInspectDate
Schedules the inspection iType for the date DateToSched. If you supply inspectorID, the
function assigns the scheduled inspection to the inspector whose Accela Automation user ID is
inspectorID.

Version

1.5

Parameters

Note

To specify the optional inspection time without passing in inspection use
scheduleInspectDate("Desc","01/01/2001",null, "AM").

To specify the option inspection comment without the other option parameters you can use
scheduleInspectDate("Desc","01/01/2001",null,null, "My Comment").

scheduleInspection
Schedules the inspection iType for DaysAhead days after current date. If you supply
inspectorID, the function assigns the scheduled inspection to the inspector whose Accela
Automation user ID is inspectorID.

Parameter Type Description

inspType string Inspection type to result.

inspStatus string Resulting status.

resultDate string Posted date of the result.

resultComment string Comment to add to the result.

capId (optional) CapIDModel Record ID to result.

Parameter Type Description

iType string Inspection type.

DateToSched string Scheduled date of inspection.

inspectorID
(optional)

string User ID of inspector.

inspTime
(optional)

string Inspection time in HH12:MIAM format or AMPM (e.g.
“12:00PM” or “PM”).

inspComm
(optional)

string Inspection comment.

Accela Automation Scripting Guide
A: Master Script Function List 213
Version

1.5

Parameters

Notes

To specify the optional inspection time without passing in inspection use
scheduleInspectDate("Desc",5,null,"AM").

To specify the option inspection comment without the other option parameters you can use
scheduleInspectDate("Desc",5,null,null,"My Comment");

searchProject
 Searches the entire hierarchy on the current record for related records that match the criteria.

Version

1.6

Parameters

Returns

Returns CapID array of all unique matching SearchTypes

setIVR
Sets the record tracking number for IVR

Parameter Type Description

iType string Inspection type.

DaysAhead number Number of days in the future to schedule the inspection for.

inspectorID
(optional)

string User ID of inspector.

inspTime
(optional)

string Inspection time in HH12:MIAM format or AMPM (e.g.
“12:00PM” or “PM”).

inspComm
(optional)

string Inspection comment.

Parameter Type Description

pProjType app type string Record type marking highest point to search. Ex. Building/
Project/NA/NA.

pSearchType app type string Record type to search for. Ex. Building/Permit/NA/NA.

Accela Automation Scripting Guide
A: Master Script Function List 214
Version

1.6

Parameters

setTask
Helper function to edit the active and complete flags on a task.

Version

2.0

Parameters

Example

To set a task to inactive/complete:

setTask(“Peer Review”,”N”,”Y”);

stripNN
Strips all non-numeric characters from the string. Only numerals and the period character
remain.

Version

1.6

Parameters

Parameter Type Description

ivrnum long New IVR tracking number.

Parameter Type Description

wfstr string Name of the task to edit.

isOpen string Edits the “active” flag on the task. If “Y” activate the task, if “N”
close the task.

isComplete string Edits the “complete” flag on the task. If “Y” set the task to
complete. If “N” set the task to incomplete.

processName
(optional)

string Optional process name that the target task resides in.

Parameter Type Description

fullStr string String to strip.

Accela Automation Scripting Guide
A: Master Script Function List 215
taskCloseAllExcept
Closes all tasks on the record except for tasks in the list wfTask1… wfTaskn. If you only supply
the parameters pStatus and pComment, the function closes all tasks on the record.

Version

1.4

Parameters

Notes

Before the function closes each task, the function updates the task as follows:

 Status = pStatus

 Status Date = current date

 Status Comment = pComment

 Action By = current user

taskStatus

Version

1.3

Parameters

Returns

Returns the status of the workflow task wfstr.

Parameter Type Description

pStatus string Status to assign to tasks.

pComment string Status comment to add to tasks.

wfTask1 …

wfTaskn

(optional)

string Names of tasks to exclude. Enter one or more tasks separated
by commas, each in double-quotes.

Parameter Type Description

wfstr string Workflow task name.

wfProcess
(optional)

string ID (R1_PROCESS_CODE) for the process that the task
belongs to.

capId (optional) CapIDModel Record ID object for record to use.

Accela Automation Scripting Guide
A: Master Script Function List 216
Notes

If record's workflow contains duplicatescheduleins wfstr tasks, use parameter wfProcess to
specify the process or subprocess whose wfstr to check.

If you use the parameter capId, the function retrieves data from the record capId.

taskStatusDate

Version

1.5

Parameters

Returns

Returns the current status date of the workflow task wfstr.

Notes

If record's workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr to use.

If you use the parameter capId, the function retrieves data from the record capId.

transferFunds

Version

1.3

Parameters

Notes

If the current record has sufficient funds (i.e. non-applied amount), transfers dollarAmount from
the current record to the record parentAppNum. The function records the transaction as a Fund
Transfer transaction on both records. If current record does not have sufficient funds, no fund
transfer takes place.

Parameter Type Description

wfstr string Workflow task name.

wfProcess
(optional)

string ID (R1_PROCESS_CODE) for the process that the task
belongs to.

capId (optional) CapIDModel Record ID object for record to use.

Parameter Type Description

parentAppNum string Record number to transfer funds to.

dollarAmount number: double Amount to transfer.

Accela Automation Scripting Guide
A: Master Script Function List 217
updateAddresses
Updates the address in a record.

Version

2.0

Parameters

updateAppStatus
Updates record status of record to stat and adds cmt to the status update history.

Version

1.3

Parameters

Notes

If you use the capId optional parameter, the function updates record capId. If you do not use the
capId parameter, the function updates current record.

The getApplication(), getParent(), createChild(), createCap() functions each return a record ID
object that you can use in the capId parameter.

updateFee

Version

1.5

Parameter Type Description

targetCapID CapIDModel Record ID object.

addressModel AddressModel Address.

Parameter Type Description

stat string Status to update the record to.

cmt string Comment to add to status update history.

capId (optional) CapIDModel Record ID object.

Accela Automation Scripting Guide
A: Master Script Function List 218
Parameters

Returns

For an updated fee, the function returns null. For an added fee, the function returns the fee
sequence number.

Notes

If a fee whose fee code is fcode and fee period is fperiod has been assessed and not invoiced,
updates the quantity on the fee to fqty. If invoice is Y, then invoices the fee. If there is more than
one assessed fee with fcode and fperiod, updates the first fee found. If the fee is not
found, adds the fee.

If this fee already exists and is invoiced, adds another instance of the same fee, unless
pDuplicate is N. The duplicate fee has an adjusted quantity, which is fqty less quantity on
previous fee.

If you use the pFeeSeq parameter, the function attempts to find the specified fee. If the function
does not find the specified fee sequence number, the function adds a new fee based on the
pDuplicate fee flag.

Warning: If adjusted quantity can be negative, do not use this function to add a fee. Accela
Automation's cashier feature does not handle negative fees well. Set pDuplicate parameter to
N.

updateRefParcelToCap
Refreshes parcel data on the specified record. The function refreshes parcel data on the record
with reference parcel values.

Version

1.6

Parameter Type Description

fcode string Fee code of the fee to be updated/added.

fsched string Fee schedule of the fee to be updated/added.

fperiod string Fee period of the fee to be updated/added.

fqty integer Quantity to be updated/added.

finvoice string Flag for invoicing (“Y” or “N”).

pDuplicate
(optional)

string Allow duplicate invoiced fee ("Y" or "N").

pFeeSeq
(optional)

integer Attempts to update a specific fee item.

Accela Automation Scripting Guide
A: Master Script Function List 219
Parameters

updateShortNotes
Updates the short notes on the specific capId detail record

Version

1.6

Parameters

updateTask
Updates the workflow task wfstr as follows:

 Status = wfstat

 Status Date = current date

 Status Comment = wfComment

 Action By = current user

Version

1.3

Parameters

Parameter Type Description

capId (optional) CapIDModel Record ID to process.

Parameter Type Description

newSN string New short notes value.

capId (optional) CapIDModel Record ID to update.

Parameter Type Description

wfstr string Name of workflow task to update.

wfstat string Status to update task to.

wfComment string Comment to update status comment to.

wfnote string Note to update task note to.

wfProcess
(optional)

string Workflow process that wfstr belongs to.

capId (optional) CapIDModel Record ID object.

Accela Automation Scripting Guide
A: Master Script Function List 220
Notes

The workflow does not promote to the next task. To promote the workflow to the next task, use
the closeTask, branchTask or loopTask function.

If record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr to check.

If you use the capId parameter, the function updates the record capId. If you use the capId
parameter, you must use the wfProcess parameter by entering a process string or entering the
word null.

updateTaskAssignedDate
Updated the assigned date of the workflow task wfstr. The function does not create a workflow
history record.

Version

1.6

Parameters

Notes

If record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr to activate.

updateTaskDepartment
Updated the assigned department for the workflow task wfstr. The function does not create a
workflow history record.

Version

1.6

Parameter Type Description

wfstr string Workflow task to edit.

wfAssignDate string New assignment date.

wfProcess
(optional)

string Process name of workflow for wfstr. Case sensitive.

Accela Automation Scripting Guide
A: Master Script Function List 221
Parameters

Notes

If record’s workflow contains duplicate wfstr tasks, use parameter wfProcess to specify the
process or subprocess whose wfstr to activate.

Assigned department must be a string with 7 values separated by slashes, such as “ADDEV/
DPE/ONLINE/LICENSE/NA/NA/NA”

updateWorkDesc
Updates the work description on the specific capId detail record.

Version

1.6

Parameters

validateGisObjects

Version

1.3

Parameters

None

Returns

Returns true if all GIS objects on the current record validate in GIS, or false if any GIS object on
the current record does not validate in GIS.

Parameter Type Description

wfstr string Workflow task to edit.

wfDepartment string
representing
department

New department code.

wfProcess
(optional)

string Process name of workflow for wfstr. Case sensitive.

Parameter Type Description

newWorkDes string New work description value.

capId (optional) CapIDModel Record ID to update.

Accela Automation Scripting Guide
A: Master Script Function List 222
workDescGet

Version

1.4

Parameters

Returns

Returns work description for the record whose record ID object is pCapId.

Notes

The getApplication(), getParent(), createChild(), createCap() functions each return a record ID
object.

zeroPad

Version

1.6

Parameters

Returns

A zero-padded string of the supplied number that is count digits long.

Example

zeroPad(“5”,4) = “0005”

Parameter Type Description

pCapId CapIDModel Record ID object for record.

Parameter Type Description

num string Number to zero pad.

count integer Number of digits required.

223
APPENDIX B:

MASTER SCRIPT
OBJECT LIST
Objects

 Fee

 genericTemplateObject

 guideSheetObject

 licenseProfObject

 licenseObject

 Task

Fee
Defines the a fee object for use by fee functions, loadFees for example.

Parameters

genericTemplateObject
You can use this object to interact with the Application Specific Information and Application
Specific Information Tables stored as generic template information on licensed professionals
and conditions

sequence code description

unit amount amountPaid

applyDate effectDate expireDate

status recDate period

display accCodeL1 accCodeL2

accCodeL3 formula udes

UDF1 UDF2 UDF3

UDF4 subGroup calcFlag

calcProc auditDate auditID

auditStatus

Accela Automation Scripting Guide
B: Master Script Object List 224
Version

2.0

Constructors
Loads the genericTemplate objects and makes object data accessible through the read only
parameters.

Example

var cond =
aa.capCondition.getCapCondition(capId,445392).getOutput()
;

var tmpObj =
genericTemplateObject(cond.getTemplateModel());

Parameters

Example

If(tmpObj.hasASI)

 var tmpObj = tmpObj.ASI["My ASI Field"];

//List all ASI

If(tmpObj.hasASI)

 For(a in tmpObj.ASI)

 logDebug(a + " : " + tmpObj.ASI[a]);

Parameter Type Description

gtmp genericTemplateM
odel

Generic template model from which to read information from.

Parameter Description

ASI An associative array comprised of data from all the ASI fields that the generic
template contains as an associative array. The constructor sets the associated
hasASI flag to true if the function finds valid ASI fields during creation. The object
stores the associative array as ASI[label name] format.

ASIT An associative array comprised of data from all the ASIT fields that the generic
template contains as an associative array. The constructor sets the associated
hasASIT flag to true if the function finds valid ASI fields during creation. The
object stores this table in the ASIT[tableName][row][column] format.

hasASI Boolean flag set to indicate if object has valid ASI loaded.

true = valid ASI found
false = no ASI found

hasTables Boolean flag set to indicate if object has valid ASIT loaded.

true = valid ASIT found
false = no ASIT found

Accela Automation Scripting Guide
B: Master Script Object List 225
Example

//List all ASI Table values

If(tmpObj.hasTables)

 for(table in tmpObj.hasASIT)

 for(row in tmpObj.hasASIT[table])

 for(col in tmpObj.hasASIT[table][row])

 logDebug(table + " : " + row + " : " + col + "
: " + tmpObj.hasASIT[table][row][col];

guideSheetObject
A helper object which represents the data that the guidesheet contains. You can retrieve these
objects for a given inspection. Each guide item is represented as a separate object.

You can use this object with Inspection Guidesheets to simplify the interaction with the various
guidesheet items and to expose the Applications Specific Information and Application Specific
Information Tables for use.

Version

2.0

Constructors
Loads the guideSheetObject for the provided guideSheet and guideSheetItem.

Example

var guideObj = guideSheetObject(guideSheet, guideItem);

Parameters

Constructor Type Description

gguidesheetModel gguideSheetModel Guidesheet object to retrieve.

gguidesheetItemModel gguidesheetItemModel Guidesheet item to retrieve.

Name Description

gsType Guidesheet type.

gsSequence Guidesheet system sequence number.

gsDescrption Guidesheet description.

gsIdentifier Guidesheet identifier.

item Guidesheet item model object.

text Guidesheet item text identifier.

status Guidesheet item status value.

Accela Automation Scripting Guide
B: Master Script Object List 226
Methods

licenseProfObject
You can use this object to interact with the reference licensed professional entities in Accela
Automation and to provide many methods to streamline the most common interactions.

Version

2.0

Constructors
Populates licenseProfObject with the license number and license type.

comment Guidesheet item comments.

score Guidesheet item score value.

info Guidesheet item application specific information values. Use the
loadInfo method to load.

infoTables Guidesheet Item application specific information table values. Use
the loadInfoTables method to load.

validTables Boolean value that determines if valid tables exist in the
guideSheetObject. True if infoTables has data (item has ASIT).

validInfo Boolean value that determines if valid application specific
information exist in the guideSheetObject. True if info has data
(item has ASI)

Name Parameters Description

loadInfo None This method populates the info parameter
with the Application Specific Information
contained in the guidesheet item model.

infoTables None This method populates the infoTables
parameter with the Application Specific
Information Table data that the guidesheet
item model contains.

Constructor Type Description

licnumber string License number to retrieve. This number is the RSTATE_LIC
value.

lictype string License type to retrieve.

Name Description

Accela Automation Scripting Guide
B: Master Script Object List 227
Example

var myLic = licenseProfObject("1234","Business");

Parameters

Example (attribs)

Ex.

if(myLic.validAttrs)

 var myValu = myLic.attribs["Is Valid Business?"];

//List attributes

if(myLic.validAttrs)

 for(attrib in myLic.attribs)

 logDebug(attrib + " : " + myLic.attribs[attrib]);

Example (infoTables)

//get value

myLic.infoTables["Codes"][0]["Type"].getValue();

Parameter Description

attribs An associate array populated with all the valid licensed professional attributes.
When valid attributes exist the validAttrs flag sets to true indicating values are
available. Use the getAttribute and setAttribute methods to access the
licensed professional attribute instead of directly accessing the attribs
parameter.

infoTables This parameter exposes the people info tables multiple dimension array of the
following format. infoTables[tableName][row][column]
To access the value of this field you must use the getValue() for the column
and to set the value you must use the setValue(val). To add or delete rows
please review the methods section for addTableRow(), removeTable(), and
removeTableRow()

refLicModel This parameter loads on object creation and provides direct access to the
licensed professional model.

valid Boolean flag set to indicate if object has a valid reference license professional
loaded.
true = valid professional found
false = no professional found

validAttrs Boolean flag set to indicate if object has valid reference licensed professional
attributes loaded.
true = valid attributes found
false = no attributes found

validTables Boolean flag set to indicate if object has valid people info tables loaded
true = valid tables found
false = no tables found

Accela Automation Scripting Guide
B: Master Script Object List 228
//set value

myLic.infoTables["Codes"][0]["Type"].setValue("Type
III");

//list all values

If(myLic.validTables)

 for(table in myLic.infoTables)

 for(row in myLic.infoTables[table])

 for(col in myLic.infoTables[table][row])

 logDebug(table + " : " + row + " : " + col + "
: " + myLic.infoTables[table][row][col].getValue();

Example (refLicModel)

myLic.refLicModel.getLicenseType();

Example (valid)

var myLic = licenseProfObject("1234","Business");

if(myLic.valid)

 //do actions

Methods

addTableFromASIT

This method copies ASI Tables to reference licensed professional people info tables. This
method attempts to add all rows from the ASI Table array to the people info table array for all
matching columns.

Parameters

Return

If ASI Table loads successfully into the people info tables, the method returns true. If the load
fails the method returns false.

Example

myLic.addTableFromASIT("myTable", CERTIFICATIONS);

addTableRow

Add a new row to the people info table utilizing an associative string array.

Parameter Type Description

tableName string Name of people info table.

ASITArray ASIT Array ASI table array that master script loads.

Accela Automation Scripting Guide
B: Master Script Object List 229
Parameters

Example

var newRow = new Array();

newRow["Column1"] = "A";

newRow["Column2"] = "B";

myLic.addTableRow("myTable",newRow);

myLic.updateRecord();

copyToRecord

Copies the current reference licensed professional to the specified record id.

Parameters

Example

myLic.copyToRecord(capId,true);

disable

Disables the licensed professional

Parameters

None

enable

Enables the licensed professional

Parameters

None

getAssociatedRecords

Retrieves all records associated to the reference licensed professional in an array.

Parameter Type Description

tableName string Name of people info table.

valueArray string array Associative string array where the index name is the column
name to load.

Parameter Type Description

capId CapIDModel Record to copy the licensed professional to.

replace boolean Flag if existing LP should be replace if found.

Accela Automation Scripting Guide
B: Master Script Object List 230
Parameters

None

Example

var capArray = myLic.getAssociatedRecords();

getAttribute

Get method for getting a licensed professional attribute value.

Parameters

Notes

Method handles error checking. Use this method instead of directly accessing the parameter.

Example

var val = myLic.getAttribute("myValue");

getMaxRowByTable

Gets the max row number for a people info table.

Parameters

Return

Returns -1 if no rows exist.

refreshTables

Refreshes the people info table arrays in the object with the data found in database.

Parameters

None

removeTable

Removes all rows from a people info table.

Parameter Type Description

attributeName string Reference license professional attribute name.

Parameter Type Description

tableName string People info table name to get the max row from.

Accela Automation Scripting Guide
B: Master Script Object List 231
Parameters

removeTableRow

Removes provided row index from provided table.

Parameters

Return

If method removes the row, returns true. Otherwise, returns false.

setAttribute

Sets a reference license professional attribute to the provided value and performs error
checking.

Parameters

Return

If method sets value, returns true. Otherwise, returns false.

Example

If(myLic.setAttribute("myValue","newValue"))

 logDebug("Value Updated");

setDisplayInACA4Table

Sets the flag to display the reference people info table in Accela Citizen Access.

Parameters

Parameter Type Description

tableName string People info table name to remove.

Parameter Type Description

tableName string People info table name to remove row from.

rowIndex long Row index to remove.

Parameter Type Description

attributeName string Reference license professional attribute name.

attributeValue string Reference license professional attribute value to set.

Parameter Type Description

tableName string Name of the people info table.

visibleFlag string Valid flag values are Y to display the table in Accela Citizen
Access or N to hide the table from Accela Citizen Access.

Accela Automation Scripting Guide
B: Master Script Object List 232
setTableEnabledFlag

Sets the enabled flag displayed on the people info tables to yes or no for the provided table row.

Parameters

Return

Returns true if update is successful.

Example

myLic.setTableEnabledFlag("myTable",0,false);

updateFromAddress

This method updates the reference professional with the address information from the provided
record.

Parameters

Return

If update is successful the method returns true, otherwise the method returns false.

Notes

The method first attempts to use the primary address. If no primary address exists the method
selects the first address available on the Record.

If the method finds an address the method then attempts to copy the Address Line 1, Address
Line 2, City, State, and Zip to the reference licensed professional. In the event an Address Line
1 is not available it attempts to create the line one by concatenating the house number, street
direction, street name, street suffix, unit type, and unit number.

updateFromRecordContactByType

This method attempts to update the contact information on a reference licensed professional
from a record contact.

Parameter Type Description

tableName string People info table name to remove row from.

rowIndex long Row index to remove.

isEnabled boolean Enabled flag.

Parameter Type Description

capId CapIDModel Record to get the address information from.

Accela Automation Scripting Guide
B: Master Script Object List 233
Parameters

Return

If the update is successful the method returns true. If the update fails it returns false.

Notes

To attempt to use the primary contact use an empty string ("") from the contact type. If you
provide a contact type and there are multiple with the same contact type, the method uses the
first occurrence of the contact type in the event .

When found the method updates the first, middle, last, and business name on the reference
licensed professional with the first, middle, last, and business name of the contact record.

If the updateAddress flag is true then the method attempts to copy the address line 1, address
line 2, address line 3, city, state, and zip from the contact record to the associate fields of the
reference licensed professional.

If the updatePhoneEmail flag is true then the method also attempts to copy the phone1,
phone2, phone3, email, and fax to the associate fields on the reference licensed professional
record.

updateFromRecordLicensedProf

This method attempts to update the reference licensed professional utilizing a transactional
licensed professional.

Parameters

Return

If the update is successful the method returns true. If the update fails it returns false.

Notes

This method searches the provided record for a transactional license professional of the same
number and the same type. If the method finds a match, the method attempts to copy all
licensed professional information from the transactional record to the reference record.

Parameter Type Description

capId CapIDModel Record to get the contact information from.

contactType string Contact type to search, use "" for primary.

updateAddress boolean Set to true to update address information.

updatePhoneE
mail

boolean Set to true to update phone information and email information.

Parameter Type Description

capId CapIDModel Record to get the license professional information from.

Accela Automation Scripting Guide
B: Master Script Object List 234
updateRecord

This method commits all changes made to the reference licensed professional object to the
database.

Parameters

None

Return

If the update is successful the method returns true. If the update fails it returns false.

Notes

 If you do not invoke this method, you lose all updates made to the licensed professional prior to
the last update.

Example

myLic.updateRecord();

licenseObject
This function creates a helper object that you can use to view and modify license information
and expiration information.

Version

1.6

Constructors

Notes

This constructor populates the licenseObject for the license number specified and the currently
loaded capId. If licNumber has a value, the helper object attempts to replicate changes to a
reference license professional, as well as the record.

Parameter Type Description

licNumber string State license number of the reference licensed professional to
link to the license object.

capId (optional) CapIDModel Record ID to use for the license object. Identifies the record
from which to load renewal information.

Accela Automation Scripting Guide
B: Master Script Object List 235
Parameters

Example

var licObj = licenseObject("1234");

Methods

getCode

Gets the expiration status of the record.

Parameters

None

Return

Returns the expiration code configured for the license.

Example

var licObj = licenseObject("1234");

var code = licObj.getCode();

getStatus

Gets the expiration status of the record.

Parameters

None

Return

Returns the expiration status

Parameter Description

refProf The referenced licensed professional.

b1Exp Contains the b1 record (renewal status on record).

b1ExpDate Returns the license expiration date in mm/dd/yyyy format (read
only).

b1ExpCode Returns the expiration code.

b1Status Returns the license renewal status (read only).

refExpDate Returns the license professional expiration date in mm/dd/yyyy
format (read only).

licNum The license number.

Accela Automation Scripting Guide
B: Master Script Object List 236
Example

var licObj = licenseObject("1234");

var status = licObj.getStatus();

setExpiration

Sets the expiration date on the license record and associate reference license professional to
the provided value.

Parameters

Example

licObj.setExpiration("01/01/2020");

setIssued

Sets the issued date on the license record and associate reference license professional to the
provided value.

Parameters

Example

licObj.setIssued("01/01/2000");

setLastRenewal

Sets the renewed date on the license record and associate reference license professional to the
provided value.

Parameters

Example

licObj.setLastRenewal("01/01/2000");

Task
Defines the task object for use by task functions, loadTasks for example.

Parameter Type Description

expDate string Expiration date in string format.

Parameter Type Description

issDate string Issued date in string format.

Parameter Type Description

renewDate string Renewed date in string format.

Accela Automation Scripting Guide
B: Master Script Object List 237
Parameters

status comment note

statusdate process processID

step active

238
APPENDIX C:

EXAMPLE EXPRESSION SCRIPT
This following example illustrates how to define an expression that uses a state agency web
service to validate a licensed professional.

In the example, you manually enter an EMSE script in the script mode window of Expression
Builder for a selected Professional Execute Fields. The EMSE script verifies the license type
and license number on a new application. The expression also updates the licensed
professional license to the most current information, for example, status, expiration date, and
address.

To verify the licensed professional

1. Navigate to the Building portlet.

2. Select a permit.

3. Click the Professionals tab.

Accela Automation displays the Professionals tab in the detail portlet

4. Click the New button to enter the licensed professional information.

5. Selects License Type from the drop-down list, or enter a License #.

If the license number and license type validate successfully, Accela Automation creates the
new record. If the license number and license type are not valid, Accela Automation
displays the EMSE error message on the Professionals tab.

To create the EMSE script to validate licensed professionals

1. Create a New expression and navigate to the Expression Name field.

Accela Automation displays the New Expression fields where you define the criteria.

Note: You must build or deploy a Web Service Stub to interface with
the external Web Services. For more information about building
a Web service stub for your agency, see the Creating an External
Web Service Stub (08ACC-04275) – Accela Automation
Technical Bulletin.pdf.

Accela Automation Scripting Guide
C: Example Expression Script 239
2. Enter an Expression Name. This scenario uses Licensed Professional
Validation.

3. Select Record Detail from the Target Portlet drop-down list.

This step specifies that the expression takes effect in the Record detail portlet or application
for the selected record type. This scenario uses the record type Building/Building
Permit/Commercial/All Categories. In general, you do not need to perform this
step.

4. Select Script Mode in the Edit Mode section.

Accela Automation re-populates the page to display the Script fields.

Accela Automation Scripting Guide
C: Example Expression Script 240
5. Select Professional from the Target Portlet drop-down list.

This step specifies that the expression takes effect in the Professional portlet for the
selected record type.

6. In the ASI Group field, select the group that contains the record type and the fields for
which you want to create an expression.

7. Use the Variables section to specify the fields affected by the expression.

Accela Automation Scripting Guide
C: Example Expression Script 241
Accela Automation displays ASI, Professional, Record Detail, and Session Variables in the
Variables field.

8. Click the Execute Fields list picker.

A pop-up window displays the Execute Fields list.

9. Expand Professional and click the License # and License Type options.

Accela Automation loads the License # and License Type options in the Execute Fields list.

10. In the Script field, enter the EMSE script. The script for this scenario is:

/*--/

| Program : LicProfAddBefore.js

| Event : LicProfAddBefore

|

/--*/

var LicProfModel = aa.env.getValue("LicProfModel");

var licenseType = LicProfModel.licenseType;

Accela Automation Scripting Guide
C: Example Expression Script 242
var licenseNbr = LicProfModel.licenseNbr;

var licenseValidateReturnCode = "0";

var licenseValidateReturnMessage = "Follow Licenses are invalid:";

if (!validateLicense(licenseType, licenseNbr))

{

 licenseValidateReturnCode = "-1";

 licenseValidateReturnMessage += "
";

 licenseValidateReturnMessage += " * License type: " + licenseType;

 licenseValidateReturnMessage += " , License number: " +
licenseNbr;

}

// check whether something wrong

if (licenseValidateReturnCode != "0")

{

 aa.env.setValue("ScriptReturnCode", licenseValidateReturnCode);

 aa.env.setValue("ScriptReturnMessage",
licenseValidateReturnMessage);

}

// check whether the licenseType and licenseNbr is valid.

function validateLicense(licenseType, licenseNbr)

{

 var accelawsUrl = 'https://www4.cbs.state.or.us/exs/bcd/accela/
ws/accelaws.cfc?method=lic_valid&returnformat=json';

 var client = aa.httpClient;

 // set url parameters

 var params = client.initPostParameters();

 params.put('p_lic_type', licenseType);

 params.put('p_lic_num', licenseNbr);

 // do validate via web service

 var scripResult = client.post(accelawsUrl, params);

 // check the return value

 if (scripResult.getSuccess())

 {

 var resultString = String(scripResult.getOutput());

Accela Automation Scripting Guide
C: Example Expression Script 243

 //Convert to jsonObject

 var result = eval("("+resultString+")");

 var valid = String(result["VALID"]);

 if (valid.toUpperCase() == "TRUE")

 {

 return true;

 }

 }

 else

 {

 aa.print("ERROR: Failed to validate license: " +
scripResult.getErrorMessage());

 return false;

 }

 return false;

}

11. Click the Validate button to check the EMSE script for errors.

12. Click the Submit button.

244
APPENDIX D:

JAVASCRIPT PRIMER
The following sections introduce the basic concepts that you need to write scripts and
understand scripts that others write. Accela uses JavaScript as the basis for the Accela
Automation scripting engine. Accela has extended pure JavaScript to include features that allow
you to interact directly with Accela Automation in your scripts.

Topics:

 Understanding Scripts

 Using Variables

 Using Expressions

 Controlling What Happens Next

 Using Functions

 Using Objects, Properties, and Methods

Understanding Scripts
To help you understand scripts, this section uses an example: a complete script that responds
to a specific event. This section also includes information on writing scripts from scratch and a
simple tool that can help writing scripts easier.

Topics:

 Our First Example

 Writing And Testing Our First Script

 Using Jext To Make Writing Scripts Easier

Our First Example
This example is a complete script that responds to an InspectionScheduleAfter event by
inserting a new smart notice with information about the scheduled inspection. The example is
several lines long, and contains comments at lines 1, 6, 9, 16, 19, and 26 that briefly explain
what is happening in each section in the script.

Note that each line that begins with a comment starts with a double slash. The double slash tells
Accela Automation to ignore that line. It is good practice to add comments to your scripts.

Accela Automation Scripting Guide
D: JavaScript Primer 245
1 //Get the permit id.

2 permitId1 = aa.env.getValue(“PermitId1”);

3 permitId2 = aa.env.getValue(“PermitId2”);

4 permitId3 = aa.env.getValue(“PermitId3”);

5

6 //Prepare the smart notice label.

7 noticeLabel = “Inspection schedule”;

8

9 //Get some information about the scheduled inspection.

10 numberOfInspections =
aa.env.getValue(“NumberOfInspections”);

11 inspectionType = aa.env.getValue(“InspectionType”);

12 inspectionScheduleMode =
aa.env.getValue(“InspectionScheduleMode”);

13 inspectionDate = aa.env.getValue(“InspectionDate”);

14 inspectionTime = aa.env.getValue(“InspectionTime”);

15

16 //Prepare label for smart notice.

17 noticeLabel = “Inspection Scheduled!”;

18

19 //Prepare the text of the new smart notice.

20 noticeText = numberOfInspections + “ Inspection(s) ” +

21 inspectionType + “ ” +

22 inspectionScheduleMode + “d on ” +

23 inspectionDate + “ ” +

24 inspectionTime + “.”;

25

Accela Automation Scripting Guide
D: JavaScript Primer 246
Another important feature of our first example is that every line that is not a comment line
seems to end with a semicolon (;). We can see that lines 2, 3, 4, 7, 10, 11, 12, 13, 14, 17, 24,
and 28 end with a semi-colon. The semi-colon tells Accela Automation that it has reached the
end of a command, and should execute it. If we look at line 27 we see that it does not end with
a semi-colon, but ends with a comma. The comma means that the command continues on to
the next line. We see that line 28 ends with a semi-colon. The semi-colon means that there is
one command that begins on line 27 and ends on line 28. If we look at lines 20, 21, 22, 23, and
24 we can see that these lines comprise one big command split across five lines to make it
easier to read.

If you forget to end your commands with a semi-colon, Accela Automation is forgiving and the
script may run correctly, but it is always good practice to end your commands with a semi-colon
when necessary. Some kinds of commands do not have to end in a semi-colon. We investigate
what kinds of commands end with a semi-colon and what kinds do not in later sections of this
document.

Writing And Testing Our First Script
While you are learning to write scripts, it is useful to be able to test simple scripts and see the
results immediately without having to attach your script to an event. To do this we use the Script
Test page. For information on testing scripts, see Chapter 6: Script Testing on page 87. When
we cover a new sample script in this document you can copy the script and paste it into the
Script Text field on the Script Test page. After you have pasted the text of the script into the
form, you can click the Submit button to run the script and view the result.

You can also type this script by hand. Typing the script can be a very helpful learning aid when
you start with script writing. However, if you make a mistake in typing you receive a message
telling you that there is a problem with your script. When you get a message telling you about
the problem, check your script to make sure that it matches the example. Another good tip for
learning to write script is to try to modify the sample script to see what happens.

Here is our first sample script for testing:

aa.print(‘Hello World.’);

If you have read the earlier sections of this document, you may recognize our sample script.
The output of this script is

Hello World.

Let us look at exactly what is happening in our sample script. The script has one line that ends
with a semi-colon just like the lines in the first example. The line begins with the two letters ‘aa’.
These two letters stand for Accela Automation. This line begins with ‘aa’ because we are going
to tell Accela Automation to do something for us. A dot follows the ‘aa’. The dot connects the
word ‘aa’ to the word ‘print’, which means that the word ‘print’ is a method of the ‘aa’ object.

26 //Create the new smart notice using the information
gathered.

27 aa.smartNotice.addNotice(permitId1, permitId2,

28 permitId3, noticeLabel, noticeText);

Accela Automation Scripting Guide
D: JavaScript Primer 247
An object is a group of associated actions or functions. The previous sample script calls the
object aa. The aa object can retrieve data from your database and then use the data to perform
tasks. A simple example of the tasks that the aa object is capable of performing is the print task,
but there are many tasks that the aa object can perform.

Objects can retrieve information, change stored information, and do many other things for you.
Writing and implementing scripts is how we get the aa object (or any other object in JavaScript)
to do work with raw data. When we choose a script to initialize in Accela Automation, we are
essentially giving a command to our machine. We call the commands we give methods. We
learn more about objects and methods in the section Using Objects, Properties, and Methods
on page 265.

We now know that this line is asking Accela Automation to print something for us. After the word
‘print’ there is a left parenthesis. After the words ‘Hello World.’ there is a right parenthesis. When
you are writing scripts, a you must follow a method name by a pair of parentheses. Sometimes
there are things in between the parentheses, called parameters. Parameters tell a method how
to do its job. When we look at the characters between the parentheses we see a single quote
followed by the words Hello World, followed by a period, followed by another single quote.
Strings are words, numbers, or punctuation marks that appear between single or double quotes.

We know that this script is telling Accela Automation to print the string ‘Hello World.’, which is
exactly what appears in the Script Output box when you use the Script Test page to run this
script. For practice, try to change the string passed to the print method of the aa object and see
what happens. You can also try to add a second line after the first one with prints out something
different, and see what happens then.

Using Jext To Make Writing Scripts Easier
The Jext editor is a freely available text editor with many features that make editing scripts
easier. Here is a screenshot of Jext in action:

Accela Automation Scripting Guide
D: JavaScript Primer 248
For Jext to recognize your scripts as JavaScript files you must save them with the extension
“.js”. When opened in Jext, the editor highlights the script text in different colors to make it
easier to read. Other useful features include a counter in the bottom left that tells you what line
of the script that you are on, and a file explorer in the along the left side to make finding and
opening files easier.

Using Variables
A variable is a placeholder in your script that you use to store a value. A variable always has a
name that you can use to represent its value. You can use the name of a variable to store
something or retrieve it. Variable names, also known as identifiers, must begin with an
underscore “_”, or letter that you can follow with letters, underscores, and digits. Here are some
sample variable names:

myVariable

Number_Of_Inspections

Test12

In this document, we always begin our variable names with a lower case letter, and capitalize
the first letter of each subsequent word in the variable name. We recommend, but do not
require, this method of variable naming. Let us look at an example of putting a value into a
variable.

Accela Automation Scripting Guide
D: JavaScript Primer 249
myVariable = 12;

aa.print(myVariable);

This script displays this output:

12

The first line of this script puts the value 12 into myVariable. The second line uses the print
method of the aa object that we investigated earlier, but instead of putting a string of characters
in between the left and right parentheses of the print method, we have put the name of our
variable. This usage tells the print method to display whatever value myVariable contains. We
can also put strings of characters into variables. Here is a script that uses a string as the value
of myVariable:

myVariable = “Hello World.”;

aa.print(myVariable);

This script displays this output:

Hello World.

Another technique that we can use is to assign the value of one variable to the value of a
different variable. Here is an example:

firstVariable = 101;

secondVariable = firstVariable;

aa.print(secondVariable);

This script displays this output:

101

In this script, we assign the value 101 to firstVariable, and then assign the value of firstVariable
to the value of secondVariable. Finally, the script prints out the value of secondVariable. When
you use firstVariable on the right side of an equals sign, we call this evaluating a variable. To
evaluate a variable is to retrieve its value. We are also evaluating a variable when we pass
secondVariable to the print method of the aa object. One might ask, what happens if we try to
evaluate the value of a variable to which you did not assign a value. For example,

firstVariable = 101;

aa.print(secondVariable);

This script displays this output:

An error occurred while running your script.

ErrorType: org.mozilla.javascript.EcmaError

Error Detail:

undefined: "secondVariable" is not defined. (script; line
1)

In this example, we removed the second line of the script. This means there is no line in the
script that assigns a value to secondVariable, but on the last line of the script, we try to print out
the value of this variable. You receive an error if the script tries to evaluate a variable without an
assigned value. When we try to execute this script we see an error message in the output box.
The error message tells us that secondVariable is not defined.

There are many potential causes for errors. Accela Automation error messages provide
meaningful information to help you solve problems with your scripts. Script writers frequently

Accela Automation Scripting Guide
D: JavaScript Primer 250
misspell variable names, so It is a good idea to look carefully at your scripts, check for
misspellings, missing semi-colons, and missing parentheses.

Topics:

 Numbers

 Strings

 True and False

 Arrays

 The Special Value “null”

 Objects

Numbers
There are many kinds of numbers you can assign to a variable. We do not provide an
exhaustive list here, but we do go over some of the common kinds of numbers that we deal
with. Numbers can be positive, negative, zero, integers, decimals, and have exponents and
other characteristics. Here are some sample numbers:

12

0

-2

1.28

0.94871

-54.09

3.1E12

5E-14

The last two sample numbers have an exponent. You probably do not need to use the
exponential form of a number, but if your script ever encounters a very large or very small
number, then tries to print that value, it may appear in the exponential form. The number after
the E is the number of places to the right that you should move the decimal point to get the non-
exponential form of the number. If the number after the exponent is negative, it represents the
number of places to the left that you need to move the decimal point to get the non-exponential
form. If you find that you need to use a kind of number not mentioned here, we encourage you
to look up more information on numbers in a JavaScript reference text.

Precision of Numbers

The precision of a number is the number of decimal digits in that number. You can use
mathematical expressions (see Mathematical Expressions on page 255) or functions (see
Using Functions on page 264) in your scripts to get various numbers. Because Accela
Automation applies the Java class BigDecimal to control the precision of results for
mathematical functions, but not for mathematical expressions. If your expected result is a
number with decimal part, use mathematical functions instead of expressions to ensure the
precision of the result.

With mathematical functions including add, subtract, multiply, divide and round, the default
DEF_DIV_SCALE value is 2. You can customize DEF_DIV_SCALE.

Accela Automation Scripting Guide
D: JavaScript Primer 251
For example:

aa.print(123.3 / 100); // The precision in the expression
is out of control.

aa.util.multiply(4.015, 100); // result: 401.5

var DEF_DIV_SCALE=3

aa.util.divide(123.3, 100) //default scale=2, result:
1.23

aa.util.divide(123.3, 100, DEF_DIV_SCALE) // result:
1.233

aa.util.round(12.1542, 1) // result: 12.2

aa.util.round(12.1542, 2) // result: 12.15

Strings
Strings comprise a number of characters in between a pair of double or single quotes. Here are
some examples:

“Hello World.”

“This string is surrounded by double quotes.”

‘This string is surrounded by single quotes.’

‘Ok’

‘A’

‘!’

These examples show that a string can be one or many characters long, surrounded by single
or double quotes. The following example shows that a string can consist of digits.:

“12345”

Escape Characters

The next example shows a string with a special escape character inside:

“Four score and \n seven years ago.”

The escape character is the backslash “\” character that you follow with the “n” character. This
special character means go to the next line down when printing out this string. This special
character calls the new line character. Here is a sample script that prints out this example:

aa.print(“Four score and \n seven years ago.”);

This script displays this output:

Four score and

 seven years ago.

All special characters begin with a backslash. Let us look at the most commonly used special
characters:

Accela Automation Scripting Guide
D: JavaScript Primer 252
Because we use the single and double quotes to determine the ends of the string, we can only
put them into a string by using the special character that represents them. Because we use the
backslash to start a special character, we must use a double to put a backslash into a string.
Other special characters allow you to insert characters from foreign languages, insert special
symbols, and insert other character types. If you find that you need to use these other special
characters, consult a standard JavaScript reference book.

True and False
Now we encounter a new kind of variable type that we have not seen before. We call this type of
variable Boolean. These variables can only hold either true or false. Here is an example:

aTrueVariable = true;

aFalseVariable = false;

In this example, we assign the true value to one variable and the false value to the other
variable. Unlike string values, you do not enclose the true and false values in quotes. You can
assign these two words to variables as special values. You typically use Boolean variables as
parameters for methods of objects or for controlling what happens next in your script. We see
some examples of how to use Boolean variables later in this document.

Arrays
An array is a special kind of variable that hold a list of values, and allows you to retrieve and
store each of the values separately. Here is an example of creating and using an array:

myVar = new Array();

myVar[1] = "Hello";

myVar[2] = "World";

aa.print(myVar[1]);

aa.print(myVar[2]);

This script displays this output:

Hello

World

The first line of the example tells Accela Automation that myVar is of the special Array type, that
is, assign a new empty Array object to myVar. So we can say that myVar contains an array
object. The second line of the script puts the string “Hello” in number one position of the array.

 Table 25: Common Special Characters in Scripting

Special Character Definition

\n New Line

\t Tab

\’ Single quote

\” Double quote

\\ Backslash

Accela Automation Scripting Guide
D: JavaScript Primer 253
The third line put the string “World” in the number two position of the array. The fourth line prints
out the value stored in the number one position of the array. The fifth line prints out the value
stored in the number two position of the array. You can store and retrieve values in any position
of the array you like. There is also a position zero, and negatively numbered positions, but most
of the time you only use the positively numbered positions.

You can find out how long an array is by using a property of all arrays. Here is an example:

myVar = new Array();

myVar[1] = "Hello";

myVar[2] = "World";

aa.print(myVar.length);

This script displays this output:

3

Note that we are printing out something called myVar.length on the last line of the script.
Whenever we need to know the length of an array we can always put “.length” after it to get the
length. Length is a property of our array. We learn about more arrays and how properties work
in the section Objects, Methods, and Properties later in this document. You may ask, if we
assigned something to position one and two then why is myVar.length returning three? The
answer is that we count position zero in the length of the array. Let us modify this example
slightly and see what happens:

myVar = new Array();

myVar[1] = "Hello";

myVar[4] = "World";

aa.print(myVar.length);

aa.print(myVar[2]);

This script displays this output:

5

undefined

We changed the third line to put a value in position four rather than in position two. The result is
that the total length of the array is now five. There are empty elements in the array at positions
0, 2, and 3. On the last line of the script we tried to evaluate myVar[2] and received a special
value called undefined that tells us that we never put anything into the array at that position.

The Special Value “null”
The word null in a script means nothing. Some methods of some objects allow you to pass null
in as the value of a parameter, usually to indicate that you do not want to send in any
meaningful value for that parameter. We see a little later that Accela Automation may return null
to your script when you try to retrieve some information from Accela Automation, usually to
indicate that no information is available. We see some of the specific places that use null later in
this document.

Accela Automation Scripting Guide
D: JavaScript Primer 254
Objects
A variable can also contain an object. An object is a self-contained module of data and its
associated processing. Lets look at an example:

myVar = aa;

myVar.print(“Hello World.”);

This script displays this output:

Hello World.

Here we can see that we assigned the aa object to the myVar variable on the first line of the
script. This assignment means that myVar contains the aa object. We then used myVar to
execute the print method of the aa object. Here is another example:

myVarOne = aa;

myVarTwo = aa;

myVarOne.print(“Hello”);

myVarTwo.print(“World”);

This script displays this output:

Hello

World

Notice that we assign the aa object to both of the variables in this script, and then call the print
method on each one. This example shows us that what really happens when you assign an
object to a variable is that the variable is only pointing at the object. The variable becomes like a
handle to the object that you can use to manipulate it. You can have many variables that all
point at the same object.

We look deeper into object in the section Object, Methods, and Properties later in this
document. We learn more about variables as we learn about other aspect of writing scripts.

Using Expressions
An expression is a compound value that evaluates to determine a result. We have already
encountered one example of an expression called an assignment statement. A simple
expression uses an equals sign to assign a value to a variable. Expressions can contain
operators that modify or join the values of some variables to come up with a final result. In this
section, we look at several different forms of expressions.

Topics:

 Mathematical Expressions

 String Expressions

 Boolean Expressions

 Relational Operators

 Special Operators

 Operator Precedence

Accela Automation Scripting Guide
D: JavaScript Primer 255
Mathematical Expressions
The kinds of expressions that most people are familiar with are arithmetic expressions. Here is
an example of an expression that adds two numbers together and assigns the result to a
variable:

myVar = 2 + 2;

aa.print(myVar);

This script displays this output:

4

In this example the “+” operator joins two numbers. Here is another example:

myVar = 1

myVar = myVar + 2;

aa.print(myVar);

firstVar = 7;

secondVar = 5;

myVar = firstVar + secondVar;

aa.print(myVar);

This script displays this output:

3

12

On the second line of this script, we add two to the current value of myVar and put the resulting
new value back into and put the resulting new value back into myVar. On the seventh line of this
script we add two variables to come up with a result that we place in myVar. There are
operators for addition, subtraction, multiplication, division, and many more. We do not cover
every arithmetic operator here, but here are six operators arithmetic operators you can use:

 Table 26: Mathematical Operators

Symbol Description Example

+ Addition. myVar = 2 + 2;
myVar now contains 4.

- Subtraction. myVar = 4 – 2;
myVar now contains 2.

* Multiplication. myVar = 2 * 3;
myVar now contains 6.

/ Division. Be careful not to divide by zero or you get an
error.

myVar = 6 / 2;
myVar now contains 3.

% Modulus. The “remainder” operator. Tells you the left
over amount, after division.

myVar = 5% 3;
myVar now contains 2.

-
(negation)

Negation. The “unary” operator. Takes whatever value
you put immediately to the right of it, and reverses its
sign.

someVar = 3;

myVar = -someVar;
myVar now contains –3.

Accela Automation Scripting Guide
D: JavaScript Primer 256
You can also use more than one operator at a time in an expression. For example:

firstVar = 7;

secondVar = 5;

myVar = firstVar - 2 + secondVar + 7;

aa.print(myVar);

This script displays this output:

17

When using a single line that contains several operators it is important to remember that, just as
in your grade school mathematics classes, some operators have a higher precedence than
others do. For example:

myVar = 2 + 6 / 3;

myVar now contains 4.

The result of the expression in this example was four because the division operator has a higher
precedence than the addition operator does. All operators, including the non-arithmetic
operators, have a certain level of precedence. When two operators in the same expression
have the same level of precedence, Accela Automation evaluates them in left to right order. For
example:

myVar = 6 * 3 / 3;

myVar now contains 6.

You can use parentheses to change the order in which to evaluate an expression:

MyVar = (2 + 6) / 4;

MyVar now contains 2.

In general, Accela Automation evaluates everything inside a set of parentheses before anything
outside the parentheses.

String Expressions
String expressions are quite simple. There is only one operator that works on strings. We use
the “+” operator for addition and to concatenate two strings together end to end to form a new
string. Here is an example:

firstVar = “Hello”;

secondVar = “World.”;

thirdVar = firstVar + secondVar;

aa.print(thirdVar);

This script displays this output:

Note: Accela Automation does not support decimal precision in
mathematical expressions. If you want to ensure the precision of
your mathematical results, consider using mathematical
functions instead. For more information, see Precision of
Numbers on page 250.

Accela Automation Scripting Guide
D: JavaScript Primer 257
Hello World.

You can concatenate more than two strings together:

myVar = “Hello” + “to the “ + “world.”;

aa.print(myVar);

This script displays this output:

Hello to the world.

Boolean Expressions
Boolean expressions always evaluate to either true or false. Table 27: Boolean Operators
shows the most common Boolean operators for boolean expressions.

First let us examine the “and” operator “&&”. This operator is true when both of its operands are
true, and false the rest of the time. The word “operands” refers to the thing that the operator is
operating on. So for example, an inspector has an inspection scheduled for today and the
inspector has called in sick. The facts that the inspector has an inspection scheduled and that
he has called in sick can be operands of the && operator. Both are true, so the operation returns
a result of true. Table 28: And Operator Results shows possible results of the “&&” operator.

You use the “&&” operator most often when you want to find out if two or more things are true at
the same time.

Next we examine the “or” operator “||”. You use the “||” operator most often when you want to
find out if at least one of two or more things is true. The result is true as long as at least one of
the operands is true. You use vertical bar character (also called a pipe), that is on the same key
as the backslash character, to type this operator. Press shift backslash to type this character.
Table 29: Or Operator Results shows a set of examples for the “||” operator.

 Table 27: Boolean Operators

Symbol Description Example

&& And myVar = true && false;
myVar now contains false.

|| Or myVar = true || 2;
myVar now contains true.

! Not someVar = true;

myVar = !someVar;
myVar now contains false.

 Table 28: And Operator Results

Example myVar Contains

myVar = true && true; true

myVar = true && false; false

myVar = false && true; false

myVar = false &&
false;

false

Accela Automation Scripting Guide
D: JavaScript Primer 258
Finally, we examine the “not” operator “!”. The “!” is a unary operator that operates on only one
operand. Like the unary minus sign, the not operator reverses the state of the value to which it
applies (Table 30: Not Operator Results).

You can use multiple Boolean operators in a row, and use parentheses to change the order of
precedence of Boolean operators, just like arithmetic operators. However, there is an additional
aspect of Boolean operators not shared by other operators called “short-circuit evaluation.”
Here are two examples of this:

myVar = false && ???;

myVar contains false no matter what is on the right hand side of the “&&”.

myVar = true || ???;

myVar contains true no matter what is on the right hand side of the “||”.

Short-circuit evaluation means that if Accela Automation can determine from the first part of an
expression whether the whole expression is going to be true or false it does not bother to
evaluate the rest of the expression.

Relational Operators
Relational operators return either true or false. However, unlike Boolean operators they can
take different kinds of operands like numbers and strings. The relational operators are ==, !=, <,
>, <=, and >=.

The “equals” operator “==” tells us if two values are the same. See Table 31: Relational
Operators.

 Table 29: Or Operator Results

Example myVar Contains

myVar = true || true; true

myVar = true || false; true

myVar = false || true; true

myVar = false ||
false;

false

 Table 30: Not Operator Results

Example myVar Contains

myVar = !true; false

myVar = !false; true

 Table 31: Relational Operators

Example myVar Contains

myVar = (true == true); true

myVar = (true == false); false

myVar = (false == true); false

Accela Automation Scripting Guide
D: JavaScript Primer 259
The “==” operator uses two equals signs to avoid confusion with the assignment operator. You
usually use the “==” operator to find out if two things are the same. You can compare any two
values using this operator. You can find out if a variable has a special value like null as in this
example:

myVar = (someVar == null);

The “!= operator is the opposite of the “==” operator. See Table 32: Relational Operators.

The <, >, <=, and >= operators are useful when comparing two numbers. See Table 33:
Relational Operators.

myVar = (false == false); true

myVar = (1 == 2); false

myVar = (2 == 2) true

myVar = (“Hello” ==
“World”);

false

myVar = (“Hello” ==
“Hello”);

true

 Table 32: Relational Operators

Example myVar Contains

myVar = (true != true); false

myVar = (true != false); true

myVar = (false != true); true

myVar = (false != false); false

myVar = (1 != 2); true

myVar = (2 != 2); false

myVar = (“Hello” !=
“World”);

true

myVar = (“Hello” !=
“Hello”);

true

 Table 33: Relational Operators

Example myVar Contains

myVar = 1 < 2; true

myVar = 2 < 1; false

myVar = 1 > 2; false

myVar = 2 > 1; true

myVar = 1 <= 2; true

 Table 31: Relational Operators

Example myVar Contains

Accela Automation Scripting Guide
D: JavaScript Primer 260
Special Operators
We only cover one special operator here. We have already seen this operator when we first
investigated creating an array. The “new” operator creates a new object. For example:

myVar = new Array();

myVar now contains an Array object.

Arrays are really just a special kind of object. We go over more about arrays in a later section.
For now, we should take note that the keyword “new” is a special kind of operator that creates a
new copy of an object type. In this example the object type was “Array”. We learn more about
creating objects in the section Objects, Methods, and Properties. There are many special
operators that we have not covered. For more information on special operators, consult a
JavaScript reference.

Operator Precedence
The operators have the precedence in the order shown.

=

||

&&

== !=

< > <= >=

+ -

* / %

! - (unary minus)

new

Controlling What Happens Next
There are several tools that you can use to indicate the next step in a script.

Topics:

 if … else

myVar = 2 <= 1; false

myVar = 1 <= 1; true

myVar = 1 >= 2; false

myVar = 2 >= 1; true

myVar = 1 >= 1; true

 Table 33: Relational Operators

Example myVar Contains

Accela Automation Scripting Guide
D: JavaScript Primer 261
 for

 while

 do … while

if … else
You use the conditional when you want to perform a set of commands only if something is true.
Here is an example:

MyVar = 1;

if(myVar > 0) {

 aa.print(“Yes.”)

}

This script displays this output:

Yes.

The conditional begins with the word “if” followed by a pair of parentheses. You can place any
expression between these parentheses. A pair of braces “{“ and “}” follow the parentheses. The
braces contain one or more commands. If the expression between the parentheses evaluates to
true then the commands between the braces executes. If the expression between the
parentheses evaluates to false then the commands between the braces do not execute. The
example script does print out the word “Yes” because it is true that myVar, which has the value
one, is greater than zero. If you set myVar was to negative one, then nothing prints out.

You use the “else” clause to specify what happens when the condition is false. Here is an
example:

MyVar = 1;

if(myVar > 2) {

 aa.print(“Yes.”)

} else {

 aa.print(“No”);

}

This script displays this output:

No.

In this example, we have changed the conditional to test if myVar is greater than two. Because
the condition evaluates to false, the else block executes instead of the main block. We use the
word “block” to refer to a group of commands between a matching pair of braces. The first block
prints “Yes” if the condition is true. The second block prints “No” if the condition is false.
Because the condition is false, this example prints out “No”.

You can also create a multi way branch with several blocks. Here is an example:

myVar = “Bagels”;

if(myVar == “Oranges”) {

 aa.print(“Fruit.”)

} else if(myVar == “Bagels”) {

Accela Automation Scripting Guide
D: JavaScript Primer 262
 aa.print(“Cereals.”);

} else if(myVar == “Spinach”) {

 aa.print(“Vegetables.”;

} else {

 aa.print(“I don’t known what food group that is in.”;

}

This script displays this output:

Cereals.

This script contains several possible blocks that can execute, depending on the value of myVar.
Because myVar has the value “Bagels”, the second block executes, and the word “Cereals”
prints out. The final else clause is optional.

for
There are several kinds of loops in JavaScript. The for loop allows a script to repeat a set of
commands repeatedly until some condition is false. You typically use the for loop when you
know how many times you want to repeat the loop. Here is an example:

for(i = 1; i < 6; i = i + 1) {

 aa.print(“The current value of the loop counter is: “ +
i);

}

This script displays this output:

The current value of the loop counter is: 1

The current value of the loop counter is: 2

The current value of the loop counter is: 3

The current value of the loop counter is: 4

The current value of the loop counter is: 5

The for loop begins with the word “for” followed by a pair of parentheses that contain three
expressions, each separated by semi-colons. After the parentheses are a pair of braces that
contain the statements that repeat by the loop. The three expressions in between the
parentheses determine how many times the loop repeats. Let us look at these three
expressions:

i = 1; i < 6; i = i + 1

The first expression is i=1. This expression set the value of the variable i to one as you might
expect. This first expression executes one time, before Accela Automation executes the body of
the loop. The body of the loop is the block, surrounded by a pair of braces that comes right after
the parenthesis. The second expression is i < 6. This is the condition of the loop, and you only
execute the body of the loop if this condition is true. Accela Automation checks the condition
just before the body of the loop executes, and the loop continues to repeat until it is false. The
third expression, i = i + 1, tells the loop how to update the loop counter each time you reach the
end of the body of the loop. When you reach the end of the body of the loop, Accela Automation
executes this statement. In this case, the third expression adds one to the counter. From the
output of the example, you can see that each time through the loop the counter value updates

Accela Automation Scripting Guide
D: JavaScript Primer 263
and the counter value prints out. The loop stops when the value of i reaches six because the
second expression is no longer true.

while
The “while” loop is another loop that repeats until its condition is false. You typically use this
loop when you do not know how many times the loop executes. Here is an example:

myArray = new Array();

myArray[0] = “Oranges”;

myArray[1] = “Bagels”;

myArray[2] = “Spinach”;

i=0;

while(i < myArray.length) {

 aa.print(myArray[i]);

 i = i + 1;

}

This script displays this output:

Oranges

Bagels

Spinach

In this example, you create an array with three elements and you set the loop counter variable i
to zero. The loop begins at the word “while”. Next is a pair of parentheses that contain the
condition for the loop. While the condition is true, the body of the loop, which comes after the
parentheses and is enclosed by a pair of brackets, repeats. We can see two commands inside
the body of the loop. The first prints out the value of the array at the position that you indicate by
the loop counter. The second line adds one to the loop counter. We need to be careful to
remember to always add a line to add to the loop counter to the end of our while loop bodies,
because if we do not then the loop never stops, and Accela Automation terminates the script
after a time-out period has elapsed.

do … while
This loop also repeats until its condition is false. Use the “do” loop when you want to make sure
to execute the body of your loop at least one time even if the condition is false before the loop
starts. Here is an example:

myArray = new Array();

myArray[0] = “Oranges”;

myArray[1] = “Bagels”;

myArray[2] = “Spinach”;

i=0;

do {

 aa.print(myArray[i]);

 i = i + 1;

Accela Automation Scripting Guide
D: JavaScript Primer 264
} while(i < 0);

This script displays this output:

Oranges

In this example we can see that the body of the do loop executes one time even though the
condition i < 0 is false before the loop begins. The example shows that a do loop begins with the
word “do” followed by a block, surrounded by braces, for the body of the loop. After the block is
the word “while” followed by a pair of parentheses that enclose the condition for the loop. Unlike
the other two loops, this last line of the loop, after the parentheses, ends with a semi-colon.
Remember to put a command to change the counter in the body of the loop if you are using a
counter to control the loop.

Using Functions
A function is a set of commands, with a name, that you can execute by calling that name and
passing in any parameters that the function requires. You usually use functions when you have
a set of commands that you want to be able to repeat at different places in your script, rather
than at one place like with a loop. Let us look at an example:

function timesTen(number) {

 result = number * 10;

 return result;

}

myNumber = timesTen(5);

aa.print(myNumber);

This script displays this output:

50

The first four lines of the script create the function. The fifth line stores the function result in a
variable and the sixth line uses the variable value as a parameter. We call the four lines that
create the function the definition of the function. You can place your function definitions at the
beginning or end or your scripts.

Function definitions begin with the word “function” followed by a space, then the name of the
function. We can see that the function name is “timesTen”. After the function name is a pair of
parentheses that enclose the parameter list for the function. We can see that there is one
parameter called “number.” You can declare as many parameters as you like, but you must
separate each one by a comma. Note that parameter names must follow the same rules as
variable names.

After the parameter list is a block of one or more commands, enclosed by a pair of braces. The
first line in this block for the timesTen function takes the number parameter, multiplies it by ten,
and puts the result in the result variable. The second line begins with the keyword “return.” This
keyword means “send back to whoever called this function the following value.” The value
following the word “return” on the second line of this script is the variable result. So when one
calls the timesTen function, it takes its first parameter, multiples it by ten, and gives as a result
the value of the result of that command.

Accela Automation Scripting Guide
D: JavaScript Primer 265
We can see the sixth line of the script calls the timesTen function and the value five passes in as
its parameter. The script assigns the result of the timesTen function to the value of the
myNumber variable. The last line of the script prints out the value.

Using Objects, Properties, and Methods
An object is a self-contained module of data and its associated processing. We get objects to do
work, or retrieve things for us, by calling the methods of the objects. We can also retrieve things
from an object using the object’s properties. A method is like a function provided to us by an
object. When we write script that asks for an object to run a particular method, we say we are
calling a method. You can call a method in the following way:

objectName.methodName(parameters);

Sometimes a method returns a value and that return value is a variable in your script, in which
case you call the method this way:

myVariable = objectName.methodName(parameters);

A property is like a variable that is part of an object. You can always retrieve a property, but you
cannot usually change the property. You can retrieve a property value as follows:

myVariable = objectName.propertyName;

Some objects are available to your script at all times, like the aa object. You retrieve other
objects through method calls, or create objects directly by your script like in the examples that
use an array. Several predefined objects are available to script writers. Some of these, like
Array, Math, and String are part of the JavaScript language. Other predefined objects like aa are
additions to JavaScript provided by Accela for interacting with Accela Automation.

Topics:

 The Array Object

 The Math Object

 The String Object

The Array Object
We have already seen one example of how to create an array, but there are other ways to
create an array that can be more convenient. An example:

myArray = new Array(“Oranges”, “Bagels”, “Spinach”);

aa.print(myArray[0]);

aa.print(myArray[1]);

aa.print(myArray[2]);

This script displays this output:

Oranges

Bagels

Spinach

Accela Automation Scripting Guide
D: JavaScript Primer 266
In this example, we initialize an array simultaneously with three elements. This approach
provides an easy way to create a small array when you know the contents of that array. The
Array object has the property length, and the methods concat, join, pop, push, reverse, shift,
slice, splice, sort, and unshift among others.

The Math Object
This object provides access to most if not all of the mathematical functions that you might need
when writing scripts. The object defines properties such as E, LN10, LN2, PI and others.
Recognize PI as the familiar constant 3.14159. The other properties are also constants. The
Math object defines many constants not already mentioned. The Math object also defines these
methods: abs, acos, asin, atan, atan2, ceil, cos, exp, floor, log, max, min, pow, random, round,
sin, sqrt, and tan. Let us look at an example of using the math object:

piToTheThirdPower = Math.exp(Math.PI, 3);

aa.print(piToTheThirdPower);

This script displays this output:

23.140692632779267

The example calls the “exp” method of the Math object, passes in the PI property of the Math
object as the first parameter of the method, and three as the second parameter of the method.
The exp method takes its first parameter and raises it to the power of the second parameter.
The output is 3.14159 * 3.14159 * 3.14159 = 23.140692632779267. Consult the Accela
Automation Script Writer’s Object Model Reference documentation or a book on JavaScript for
more information on the Math object.

The String Object
When you execute a script with the line:

myVariable = “Hello World.”

You are really creating a String object. Let us look at an example:

myString = “Hello World”;

aa.print(myString.length);

aa.print(myString.toUpperCase());

This script displays this output:

11

HELLO WORLD

We can see from the example that you can use the name of the variable that contains the string
to retrieve the length of the string, and call a method of the String object that retrieves an upper
case version of a string. The String object has a length property, and the methods slice, split,
substr, substring, toLowerCase, and toUpperCase among others. Consult the Accela
Automation Script Writer’s Object Model Reference or a book on JavaScript for more
information on the String object.

267
APPENDIX E:

RELEASE NOTES AND MIGRATION
Version 2.0 of the master script framework provides script includes and free-form script control
sequencing. As a result, you need to follow a different upgrade path from 1.x versions of the
master script than previously followed.

This appendix details the framework changes as well as the steps required to properly upgrade
existing version to the new 2.0 release.

Topics:

 Execution FrameWork Changes

 Script Control Sequencing Changes

 Upgrading from 1.x to 2.x

 Resolved Issues and Edits to Existing Scripts

 New Master Scripts

 New Functions

Execution FrameWork Changes
In the 1.x framework each master script incorporated all functions and variables needed for the
associated event. Many of these functions and variables were common across most of the
scripts. If you needed to make a change to one of these functions, you had to manually copy the
change into each of the scripts that used the common function. This made maintenance of the
scripts difficult.

The 2.0 framework localizes these common functions into a couple script files and includes the
script files by reference in each of the individual script files during runtime. This function
localization enables you to implement a common change across all master scripts by
implementing the change in one place (Chapter 3: Master Scripts on page 56).

Script Control Sequencing Changes
In the 1.x framework, you had to number script controls (stored in Standard Choices)
sequentially to execute them properly (01, 02, 03, for example). If you made an entry out of

Note: Accela Automation 7.3 packages master script framework
version 2.0.

Accela Automation Scripting Guide
E: Release Notes and Migration 268
sequence or if you had a gap in the numbering, the script control and any following script
controls did not execute.

The version 2.0 framework executes all enabled script controls in the displayed order. Figure
41: Example Script Control Sequencing shows a valid set of script controls. Note that the last
line contains a valid alpha character.

Figure 41: Example Script Control Sequencing

Upgrading from 1.x to 2.x
The following section details the upgrade process and special considerations required when
upgrading.

Topics:

 Configuring the Global Variables

 Migrating Custom Functions

 Installing Master Scripts

 Updating Script Control Sequences

 Reinstating 1.x Script Control Sequencing

Configuring the Global Variables
The 2.x master script framework uses the INCLUDES_ACCELA_GLOBALS file to set common
parameters across all the master script files. You set variable parameters one time in the
INCLUDES_ACCELA_GLOBALS file, then include a reference to this file in each of the master
script files. For the 1.x master script framework, you set these variable parameters individually
in each of the master script files.

Best practice is to set these variable parameters that same in each of the master script files. If
the variable parameter settings differ across the master script files, evaluate these differences
and determine whether you want to retain those differences (Configuring Global Variables on
page 62).

Accela Automation Scripting Guide
E: Release Notes and Migration 269
To update your 1.x version scripts to 2.0

1. Replace global variables that are the same across your 1.x master script files:

2. Change the variables in the INCLUDES_ACCELA_GLOBALS to match your existing
implementation.

3. Incorporate a reference to the INCLUDES_ACCELA_GLOBALS in each of the your 1.x
master scripts.

var SCRIPT_VERSION = 2.0

eval(getScriptText("INCLUDES_ACCELA_FUNCTIONS"));

eval(getScriptText("INCLUDES_ACCELA_GLOBALS"));

eval(getScriptText("INCLUDES_CUSTOM"));

4. Remove the old global variable settings from your 1.x master script files.

5. In the END User Configurable Parameters section, change the script version variable to
2.0.

var SCRIPT_VERSION = 2.0

6. Save the new master script file.

Migrating Custom Functions
The next step to implement the 2.x master script framework is to identify customization made to
the 1.x master scripts and migrate that functionality to the custom include file. Evaluate each
installed master script independently.

To migrate a custom function

1. Locate your customization.

2. Copy the custom function into the INCLUDES_CUSTOM script.

This step makes the customization available to all 2.x master scripts (Figure 42: Copying
Customizatons).

3. If you modified an Accela provided master script function, copy that function to your
INCLUDES_CUSTOM file.

Note: Best practice is to align your scripts with a single set of variable
definitions in the INCLUDES_ACCELA_GLOBALS files.

Note: If a master script file must use a global variable definition
different from the other master script files, ignore the following
procedure for that master script file.

Note: Modify older script controls, that use the closeWorkflow
function, to use the closeTask function.

Accela Automation Scripting Guide
E: Release Notes and Migration 270
Figure 42: Copying Customizatons

4. Save the INCLUDES_CUSTOM file.

Installing Master Scripts

To install new master scripts

1. Add the new master script to Accela Automation (Adding a Script on page 52).

2. Associate an event with the script (Enabling an Event on page 48 and Associating Events
with Scripts on page 55).

Updating Script Control Sequences

To update script control sequences

Caution: Do not modify the INCLUDES_ACCELA_FUNCTIONS script file
to include customizations.

If the INCLUDES_ACCELA_FUNCTIONS file contains a function
of the same name as the INCLUDES_CUSTOM file, the function
in the INCLUDES_CUSTOM file overwrites the function in the
INCLUDES_ACCELA_FUNCTIONS file, which can cause
unknown consequences.

Note: Upgrade and install all master scripts at the same time.

ApplicationSubmitAfter1.6

updateAddressCustom ()
updateContactCustom ()

...

ContactEditAfter1.6

updateAddressCustom ()
updateContactCustom ()

updateRefContact 4agency()
...

INCLUDES_CUSTOM

updateAddressCustom ()
updateContactCustom ()

updateRefContact 4agency()
...

Accela Automation Scripting Guide
E: Release Notes and Migration 271
1. Review script controls for sequences that did not execute in the 1.x framework, but do
execute in the 2.x framework (Script Control Sequencing Changes on page 267).

Figure 43: Example of Out of Sequence Script Control that Executes in 2.x

2. Properly disable out of sequence script controls.

Reinstating 1.x Script Control Sequencing
You can reinstate the 1.x script control sequencing rules to disable out of sequence script
controls.

To reinstate 1.x script control sequencing rules

1. Locate the getScriptAction_v1_6 function in the INCLUDES_ACCELA_FUNCTIONS.js file.

2. Copy the function to a text editor.

3. Rename the function to getScriptAction.

4. Paste the new function in the INCLUDES_CUSTOM file.

Resolved Issues and Edits to Existing Scripts
Table 34: 2.x Framework Script Improvements lists improvements made to master scripts in the
2.x framework.

Note: A script writer can deliberately number a script control out of
sequence, in the 1.x framework, to disable it (Figure 43: Example
of Out of Sequence Script Control that Executes in 2.x).

 Table 34: 2.x Framework Script Improvements

ACA Page Flow Scripts Added ASI and ASIT functions for Accela Citizen Access page flow
scripts. Updated page flow master script samples to use them.

addCustomFee Fixed to allow passing feePeriod.

Accela Automation Scripting Guide
E: Release Notes and Migration 272
addStdCondition Updated to perform exact match of criteria.

addTimeAccountingRec
ordToWorkflow

Updated to accept TA group codes and type codes.

All ASI Table functions ASI Tables functions all use the asiTableValObj when working with table
values. AddToASITable and AddASITable functions can use either the
objects or strings when adding values.

All Master Scripts Moved systemUserObj declaration after determining public user flag

All Scripts Replaced logMessage() with logDebug() for error.

ApplicationStatusUpdate
Before

Updated return code to "-1" when cancelling the event. Case 10ACC-
03164 requires this change.

ApplicationSubmitAfter
and
ConvertToRealCapAfter

Fixed issue for when you can submit Accela Citizen Access records
anonymously and the user ID is null

asiTableValObj Updated asiTableValObj to always return a string. Fixes issue when
value is null.

Contact functions Updated all contact functions to use correct permitId event parameter.

copyASITables Removed the redundant parameter check.

createChild Added the optional parameter - parent capId: the record id to use as the
parent for which to create the child.

copyASITables,
copyAppSpecific

Added ingoreArr logic to allow for exclusions.

createPublicUserFromCo
ntact

Edited to solve issue with long passwords not working. See http://
community.accela.com/accela_citizen_access/f/32/t/1694.aspx

createRefContactsFromC
apContactsAndLink

Now returns the sequence number of the contact that was created/
refreshed.

documentUploadBefore
and
documentUploadAfter

Accela Automation now provides CapID; removed check that made
script for Accela Citizen Access only.

externalLP_CA_3_2 Made minor revision

getContactArray Added extra data elements to array.

getContactArray Added check for ApplicationSubmitAfter event. Because the
contactsgroup array is only on pageflow, on Accela Citizen Access, pull it
the normal way even though it is a partial record.

getParentLicenseCapID Changed to first return the Parent record. If not found, return the EST
record.

Inspection events Added totalTime parameter for inspection events. Added consistency
with the inspection result comment between all events.

InspectionMultiple
events

Updates to master scripts to handle when you do not choose an
inspector.

InspectionMultipleSched
ule Events

Added inspector names.

 Table 34: 2.x Framework Script Improvements

Accela Automation Scripting Guide
E: Release Notes and Migration 273
New Master Scripts
 ParcelAddBefore

 PaymentProcessingAfter

 PaymentProcessingBefore

 TimeAccountAddAfter

 TimeAccountingUpdateAfter

 UniversalMasterScript

 VoidPaymentAfter

 VoidPaymentBefore

New Functions
 addAddressStdCondition

 addASITable4ACAPageFlow

InspectionMultipleSched
uleBefore

Added variables for inspObj, inspectionType, and inspectionGroup.

InspectionResultModifyB
efore

Added parameter inspTotalTime passed from the event.

InspectionScheduleAfter
events

Fixed issue to accommodate new "request" functionality.

inspScheduleDate Updated based on issue with resulting inspections.

licenseProfObject Updated to take a null lictype and return first match on licNumber.

licenseProfObject Fixed potential undefined object error.

loadASITablesBefore Removed readOnly aspects not necessary in before script.

loadTasks Added active flag attribute.

loadTasks Updated to include step number of task.

loadTaskSpecific Error message output references the correct object name.

logDebug Fixed bug.

logDebug Fixed to no longer check nextWorkingDay.

lookup Fixed bug in the function strControl; duplicate declaration caused scope
issues.

PaymentReceiveBefore/
After

Added new fields.

setIvr Removed comment and changed to LogDebug.

StdCondition Updated job to do a check on type/desc and prevent adding incorrect
values.

 Table 34: 2.x Framework Script Improvements

Accela Automation Scripting Guide
E: Release Notes and Migration 274
 addContactStdCondition

 addLicenseStdCondition

 addTask

 addTimeAccountingRecord

 addTimeAccountingRecordToWorkflow

 applyPayments

 capSet

 copyASITables

 copyContactsByType

 copyOwnersFromParcel

 createParent

 createPendingInspection

 createPendingInspectionFromReqd

 editCapContactAttribute

 editReportedChannel

 feeAmountExcept

 genericTemplateObject

 getGuideSheetObjects

 guideSheetObject

 insertSubProcess

 licenseProfObject

 loadASITablesBefore

 paymentByTrustAccount

 paymentGetNotAppliedTot

 removeTask

 setTask

	Accela Automation 7.3 FP3 Scripting Guide
	Table of Contents
	Preface
	Revision History
	Target Audience
	Obtaining Technical Assistance
	Disclaimer
	Available Resources
	Documentation Feedback

	Chapter 1: Introduction
	Understanding Events
	Understanding Master Scripts
	Understanding Standard Choice Script Controls
	Understanding Expression Builder Scripting

	Chapter 2: Event and Script Setup
	Listing of Events and Master Scripts
	Working with Events
	Triggering Events
	Working with Scripts
	Associating Events with Scripts

	Chapter 3: Master Scripts
	Viewing Master Scripts
	Understanding the EMSE Execution Path
	Creating a New Script
	Configuring the Universal Script
	Configuring Global Variables
	Adding Custom Functions

	Chapter 4: Script Controls
	Understanding Script Controls
	Understanding Script Control Syntax
	Understanding Criteria (the If Clause)
	Understanding Actions (the Then Clause)
	Specifying Script Controls as Standard Choices
	Understanding Script Control Branching
	Naming Inspection Result Events
	Exploring an Object

	Chapter 5: Accela Citizen Access Page Flow Scripts
	Understanding Accela Citizen Access Page Flow Scripts
	Using Model Objects
	Creating a Page Flow Master Script

	Chapter 6: Script Testing
	Understanding the Script Test Tool
	Testing an Event and Script Association
	Running a Script Test
	Troubleshooting

	Chapter 7: Accela Automation Object Model
	Discussing the Accela Automation Object Model
	Understanding Script Return Values

	Appendix A: Master Script Function List
	activateTask
	addAddressCondition
	addAddressStdCondition
	addAllFees
	addAppCondition
	addASITable
	addASITable4ACAPageFlow
	addContactStdCondition
	addCustomFee
	addFee
	addFeeWithExtraData
	addLicenseCondition
	addLicenseStdCondition
	addLookup
	addParcelAndOwnerFromRefAddress
	addParcelCondition
	addParcelDistrict
	addParent
	addrAddCondition
	addReferenceContactByName
	addressExistsOnCap
	addStdCondition
	addTask
	addTimeAccountingRecord
	addTimeAccountingRecordToWorkflow
	addToASITable
	allTasksComplete
	appHasCondition
	applyPayments
	appMatch
	appNameIsUnique
	assignCap
	assignInspection
	assignTask
	autoAssignInspection
	branch
	branchTask
	capHasExpiredLicProf
	capIdsFilterByFileDate
	capIdsGetByAddr
	capIdsGetByParcel
	capSet
	checkCapForLicensedProfessionalType
	checkInspectionResult
	childGetByCapType
	closeCap
	closeSubWorkflow
	closeTask
	comment
	comparePeopleGeneric
	completeCAP
	contactAddFromUser
	contactSetPrimary
	contactSetRelation
	convertDate
	convertStringToPhone
	copyAddresses
	copyAppSpecific
	copyASIFields
	copyASITables
	copyCalcVal
	copyConditions
	copyConditionsFromParcel
	copyContacts
	copyContactsByType
	copyFees
	copyLicensedProf
	copyOwner
	copyOwnersByParcel
	copyParcelGisObjects
	copyParcels
	copySchedInspections
	countActiveTasks
	countIdenticalInspections
	createAddresses
	createCap
	createCapComment
	createChild
	createParent
	createPendingInspection
	createPendingInspFromReqd
	createPublicUserFromContact
	createRefContactsFromCapContactsAndLink
	createRefLicProf
	createRefLicProfFromLicProf
	dateAdd
	dateAddMonths
	dateFormatted
	dateNextOccur
	deactivateTask
	deleteTask
	editAppName
	editAppSpecific
	editBuildingCount
	editCapContactAttribute
	editChannelReported
	editContactType
	editHouseCount
	editInspectionRequiredFlag
	editLookup
	editPriority
	editRefLicProfAttribute
	editReportedChannel
	editScheduledDate
	editTaskComment
	editTaskDueDate
	editTaskSpecific
	email
	emailContact
	endBranch
	executeASITable
	exists
	externalLP_CA
	feeAmount
	feeAmountExcept
	feeBalance
	feeCopyByDateRange
	feeExists
	feeGetTotByDateRange
	feeQty
	getAddressConditions
	getAppIdByASI
	getAppIdByName
	getApplication
	getAppSpecific
	getCapByAddress
	getCAPConditions
	getCapId
	getCapsWithConditionsRelatedByRefContact
	getChildren
	getChildTasks
	getConditions
	getContactArray
	getContactConditions
	getCSLBInfo
	getDepartmentName
	getGISBufferInfo
	getGISInfo
	getGISInfoArray
	getGuideSheetObjects
	getInspector
	getLastInspector
	getLastScheduledInspector
	getLicenseConditions
	getLicenseProfessional
	getParcelConditions
	getParent
	getParents
	getRefLicenseProf
	getRelatedCapsByAddress
	getRelatedCapsByParcel
	getReportedChannel
	getScheduledInspId
	getShortNotes
	getTaskDueDate
	getTaskStatusForEmail
	hasPrimaryAddressInCap
	insertSubProcess
	inspCancelAll
	invoiceFee
	isScheduled
	isTaskActive
	isTaskComplete
	isTaskStatus
	jsDateToASIDate
	jsDateToMMDDYYYY
	licEditExpInfo
	loadAddressAttributes
	loadAppSpecific[4ACA]
	loadASITable
	loadASITables[4ACA][Before]
	loadFees
	loadGuideSheetItems
	loadParcelAttributes
	loadTasks
	loadTaskSpecific
	logDebug
	lookup
	lookupDateRange
	lookupFeesByValuation
	lookupFeesByValuationSlidingScale
	loopTask
	matches
	nextWorkDay
	openUrlInNewWindow
	parcelConditionExists
	parcelExistsOnCap
	paymentByTrustAccount
	paymentGetNotAppliedTot
	proximity
	proximityToAttribute
	refLicProfGetAttribute
	refLicProfGetDate
	removeAllFees
	removeASITable
	removeCapCondition
	removeFee
	removeParcelCondition
	removeTask
	replaceMessageTokens
	resultInspection
	scheduleInspectDate
	scheduleInspection
	searchProject
	setIVR
	setTask
	stripNN
	taskCloseAllExcept
	taskStatus
	taskStatusDate
	transferFunds
	updateAddresses
	updateAppStatus
	updateFee
	updateRefParcelToCap
	updateShortNotes
	updateTask
	updateTaskAssignedDate
	updateTaskDepartment
	updateWorkDesc
	validateGisObjects
	workDescGet
	zeroPad

	Appendix B: Master Script Object List
	Fee
	genericTemplateObject
	guideSheetObject
	licenseProfObject
	licenseObject
	Task

	Appendix C: Example Expression Script
	Appendix D: JavaScript Primer
	Understanding Scripts
	Using Variables
	Using Expressions
	Controlling What Happens Next
	Using Functions
	Using Objects, Properties, and Methods

	Appendix E: Release Notes and Migration
	Execution FrameWork Changes
	Script Control Sequencing Changes
	Upgrading from 1.x to 2.x
	Resolved Issues and Edits to Existing Scripts
	New Master Scripts
	New Functions

