
Developer GuideDeveloper Guide // overviewoverview

AngularJS is a structural framework for dynamic web apps. It lets you use HTML as your template language and lets you
extend HTML's syntax to express your application's components clearly and succinctly. Out of the box, it eliminates much of
the code you currently write through data binding and dependency injection. And it all happens in JavaScript within the
browser making it an ideal partner with any server technology.

Angular is what HTML would have been had it been designed for applications. HTML is a great declarative language for
static documents. It does not contain much in the way of creating applications, and as a result building web applications is
an exercise in what do I have to do, so that I trick the browser in to doing what I want.

The impedance mismatch between dynamic applications and static documents is often solved as:

library - a collection of functions which are useful when writing web apps. Your code is in charge and it calls into the
library when it sees fit. E.g., jQuery.

frameworks - a particular implementation of a web application, where your code fills in the details. The framework is in
charge and it calls into your code when it needs something app specific. E.g., knockout, sproutcore, etc.

Angular takes another approach. It attempts to minimize the impedance mismatch between document centric HTML and
what an application needs by creating new HTML constructs. Angular teaches the browser new syntax through a construct
we call directives. Examples include:

Data binding as in {{}}.

DOM control structures for repeating/hiding DOM fragments.
Support for forms and form validation.
Attaching code-behind to DOM elements.
Grouping of HTML into reusable components.

End-to-end solution
Angular tries to be an end-to-end solution, when building a web application. This means it is not a single piece in an overall
puzzle of building a web application, but an end-to-end solution. This makes Angular opinionated about how a CRUD
application should be built. But while it is opinionated, it also tries to make sure that its opinion is just a starting point, which
you can easily change. Angular comes with the following out-of-the-box:

Everything you need to build a CRUD app in a cohesive set: data-binding, basic templating directives, form validation,
routing, deep-linking, reusable components, dependency injection.
Testability story: unit-testing, end-to-end testing, mocks, test harnesses.
Seed application with directory layout and test scripts as a starting point.

Angular Sweet Spot
Angular simplifies application development by presenting a higher level of abstraction to the developer. Like any abstraction,
it comes at a cost of flexibility. In other words not every app is a good fit for Angular. Angular was built for the CRUD
application in mind. Luckily CRUD applications represent at least 90% of the web applications. But to understand what
Angular is good at one also has to understand when an app is not a good fit for Angular.

Games, and GUI editors are examples of very intensive and tricky DOM manipulation. These kinds of apps are different
from CRUD apps, and as a result are not a good fit for Angular. In these cases using something closer to bare metal such
as jQuery may be a better fit.

Below is a typical CRUD application which contains a form. The form values are validated, and are used to compute the

index.html script.js End to end test

total, which is formatted to a particular locale. These are some common concepts which the application developer may
face:

attaching data-model to the UI.
writing, reading and validating user input.
computing new values based on the model.
formatting output in a user specific locale.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="InvoiceCntl""InvoiceCntl">>8.

 Invoice:Invoice:9.

10.

11.

 <table><table>12.

 <tr><td><tr><td>QuantityQuantity</td><td></td><td>CostCost</td></tr></td></tr>13.

 <tr><tr>14.

 <td><input<td><input typetype=="integer""integer" minmin=="0""0" ng-modelng-model=="qty""qty" requiredrequired ></td>></td>15.

 <td><input<td><input typetype=="number""number" ng-modelng-model=="cost""cost" requiredrequired ></td>></td>16.

 </tr></tr>17.

 </table></table>18.

 <hr><hr>19.

 Total:Total: {{qty * cost | currency}} {{qty * cost | currency}}20.

 </div></div>21.

 </body></body>22.

</html></html>23.

script.js :

functionfunction InvoiceCntlInvoiceCntl(($scope$scope)) {{1.

 $scope $scope..qty qty == 11;;2.

 $scope $scope..cost cost == 19.9519.95;;3.

}}4.

End to end test :

itit(('should show of angular binding''should show of angular binding',, functionfunction()() {{1.

 expect expect((bindingbinding(('qty * cost''qty * cost')).)).toEqualtoEqual(('$19.95''$19.95'););2.

 input input(('qty''qty').).enterenter(('2''2'););3.

 input input(('cost''cost').).enterenter(('5.00''5.00'););4.

 expect expect((bindingbinding(('qty * cost''qty * cost')).)).toEqualtoEqual(('$10.00''$10.00'););5.

});});6.

Demo

Try out the Live Preview above, and then let's walk through the example and describe what's going on.

In the <html> tag, we specify that it is an Angular application with the ng-app directive. The ng-app will cause Angular to

auto initialize your application.

We load Angular using the <script> tag:

From the ng-model attribute of the <input> tags, Angular automatically sets up two-way data binding, and we also

demonstrate some easy input validation:

These input widgets look normal enough, but consider these points:

When this page loaded, Angular bound the names of the input widgets (qty and cost) to variables of the same name.

Think of those variables as the "Model" component of the Model-View-Controller design pattern.
Note that the HTML widget input has special powers. The input invalidates itself by turning red when you enter invalid

data or leave the the input fields blank. These new widget behaviors make it easier to implement field validation
common in CRUD applications.

And finally, the mysterious {{ double curly braces }}:

This notation, {{ _expression_ }}, is Angular markup for data-binding. The expression itself can be a combination of

both an expression and a filter: {{ expression | filter }}. Angular provides filters for formatting display data.

In the example above, the expression in double-curly braces directs Angular to "bind the data we got from the input widgets
to the display, multiply them together, and format the resulting number into output that looks like money."

Notice that we achieved this application behavior not by calling Angular methods, nor by implementing application specific
behavior as a framework. We achieved the behavior because the browser behaved more in line with what is needed for a
dynamic web application rather then what is needed for a static document. Angular has lowered the impedance mismatch
to the point where no library/framework calls are needed.

Angular is built around the belief that declarative code is better than imperative when it comes to building UIs and wiring
software components together, while imperative code is excellent for expressing business logic.

It is a very good idea to decouple DOM manipulation from app logic. This dramatically improves the testability of the
code.
It is a really, really good idea to regard app testing as equal in importance to app writing. Testing difficulty is
dramatically affected by the way the code is structured.
It is an excellent idea to decouple the client side of an app from the server side. This allows development work to
progress in parallel, and allows for reuse of both sides.
It is very helpful indeed if the framework guides developers through the entire journey of building an app: from
designing the UI, through writing the business logic, to testing.
It is always good to make common tasks trivial and difficult tasks possible.

Angular frees you from the following pain:

Registering callbacks: Registering callbacks clutters your code, making it hard to see the forest for the trees.
Removing common boilerplate code such as callbacks is a good thing. It vastly reduces the amount of JavaScript
coding you have to do, and it makes it easier to see what your application does.
Manipulating HTML DOM programmatically: Manipulating HTML DOM is a cornerstone of AJAX applications, but it's
cumbersome and error-prone. By declaratively describing how the UI should change as your application state changes,
you are freed from low level DOM manipulation tasks. Most applications written with Angular never have to
programmatically manipulate the DOM, although you can if you want to.
Marshaling data to and from the UI: CRUD operations make up the majority of AJAX applications. The flow of
marshaling data from the server to an internal object to an HTML form, allowing users to modify the form, validating the
form, displaying validation errors, returning to an internal model, and then back to the server, creates a lot of
boilerplate code. Angular eliminates almost all of this boilerplate, leaving code that describes the overall flow of the
application rather than all of the implementation details.
Writing tons of initialization code just to get started: Typically you need to write a lot of plumbing just to get a
basic "Hello World" AJAX app working. With Angular you can bootstrap your app easily using services, which are
auto-injected into your application in a Guice-like dependency-injection style. This allows you to get started developing
features quickly. As a bonus, you get full control over the initialization process in automated tests.

Here is a presentation on Angular from May 2012.

AngularJS MTV Meetup (May 2012)

Developer GuideDeveloper Guide // bootstrapbootstrap

This page explains the Angular initialization process and how you can manually initialize Angular if necessary.

This example shows the recommended path for integrating Angular with what we call automatic initialization.

<!doctype html><!doctype html>1.

<html<html xmlns:ngxmlns:ng=="http://angularjs.org""http://angularjs.org" ng-appng-app>>2.

 <body><body>3.

 4.

 <script<script srcsrc=="angular.js""angular.js">>5.

 </body></body>6.

</html></html>7.

Place the script tag at the bottom of the page. Placing script tags at the end of the page improves app load time

because the HTML loading is not blocked by loading of the angular.js script. You can get the latest bits from

http://code.angularjs.org. Please don't link your production code to this URL, as it will expose a security hole on your
site. For experimental development linking to our site is fine.

Choose: angular-[version].js for a human-readable file, suitable for development and debugging.

Choose: angular-[version].min.js for a compressed and obfuscated file, suitable for use in production.

Place ng-app to the root of your application, typically on the <html> tag if you want angular to auto-bootstrap your

application.

If you choose to use the old style directive syntax ng: then include xml-namespace in html to make IE happy. (This is

here for historical reasons, and we no longer recommend use of ng:.)

Angular initializes automatically upon DOMContentLoaded event, at which point Angular looks for the ng-app directive

which designates your application root. If the ng-app directive is found then Angular will:

load the module associated with the directive.
create the application injector

compile the DOM treating the ng-app directive as the root of the compilation. This allows you to tell it to treat only a

portion of the DOM as an Angular application.

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="optionalModuleName""optionalModuleName">>2.

 <body><body>3.

 I can add: {{ 1+2 }}. I can add: {{ 1+2 }}.4.

 <script<script srcsrc=="angular.js""angular.js"></script>></script>5.

 </body></body>6.

</html></html>7.

If you need to have more control over the initialization process, you can use a manual bootstrapping method instead.
Examples of when you'd need to do this include using script loaders or the need to perform an operation before Angular
compiles a page.

Here is an example of manually initializing Angular. The example is equivalent to using the ng-app directive.

<!doctype html><!doctype html>1.

<html<html xmlns:ngxmlns:ng=="http://angularjs.org""http://angularjs.org">>2.

 <body><body>3.

 Hello {{'World'}}! Hello {{'World'}}!4.

 <script<script srcsrc=="http://code.angularjs.org/angular.js""http://code.angularjs.org/angular.js"></script>></script>5.

 <script><script>6.

 angular angular..elementelement((documentdocument).).readyready((functionfunction()() {{7.

 angular angular..bootstrapbootstrap((documentdocument););8.

 });});9.

 </script></script>10.

 </body></body>11.

</html></html>12.

This is the sequence that your code should follow:

After the page and all of the code is loaded, find the root of the HTML template, which is typically the root of the
document.

1.

Call api/angular.bootstrap to compile the template into an executable, bi-directionally bound application.2.

Developer GuideDeveloper Guide // compilercompiler

Angular's HTML compiler allows the developer to teach the browser new HTML syntax. The compiler allows you to

attach behavior to any HTML element or attribute and even create new HTML element or attributes with custom behavior.
Angular calls these behavior extensions directives.

HTML has a lot of constructs for formatting the HTML for static documents in a declarative fashion. For example if
something needs to be centered, there is no need to provide instructions to the browser how the window size needs to be
divided in half so that center is found, and that this center needs to be aligned with the text's center. Simply add
align="center" attribute to any element to achieve the desired behavior. Such is the power of declarative language.

But the declarative language is also limited, since it does not allow you to teach the browser new syntax. For example there
is no easy way to get the browser to align the text at 1/3 the position instead of 1/2. What is needed is a way to teach
browser new HTML syntax.

Angular comes pre-bundled with common directives which are useful for building any app. We also expect that you will
create directives that are specific to your app. These extension become a Domain Specific Language for building your
application.

All of this compilation takes place in the web browser; no server side or pre-compilation step is involved.

Compiler is an angular service which traverses the DOM looking for attributes. The compilation process happens into two
phases.

Compile: traverse the DOM and collect all of the directives. The result is a linking function.1.

Link: combine the directives with a scope and produce a live view. Any changes in the scope model are reflected in the
view, and any user interactions with the view are reflected in the scope model. This makes the scope model the single
source of truth.

2.

Some directives such ng-repeat clone DOM elements once for each item in collection. Having a compile and link phase

improves performance since the cloned template only needs to be compiled once, and then linked once for each clone
instance.

A directive is a behavior which should be triggered when specific HTML constructs are encountered in the compilation
process. The directives can be placed in element names, attributes, class names, as well as comments. Here are some
equivalent examples of invoking the ng-bind directive.

<span>1.

<span>2.

<ng-bind></ng-bind><ng-bind></ng-bind>3.

<!-- directive: ng-bind exp --><!-- directive: ng-bind exp -->4.

A directive is just a function which executes when the compiler encounters it in the DOM. See directive API for

in-depth documentation on how to write directives.

Here is a directive which makes any element draggable. Notice the draggable attribute on the element.

index.html script.js

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="drag""drag">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <span>Drag MEDrag ME8.

 </body></body>9.

</html></html>10.

script.js :

angularangular..modulemodule(('drag''drag',, []).[]).1.

 directive directive(('draggable''draggable',, functionfunction(($document$document)) {{2.

 varvar startX startX==00,, startY startY==00,, x x == 00,, y y == 00;;3.

 returnreturn functionfunction((scopescope,, element element,, attr attr)) {{4.

 element element..csscss({({5.

 position position:: 'relative''relative',,6.

 border border:: '1px solid red''1px solid red',,7.

 backgroundColor backgroundColor:: 'lightgrey''lightgrey',,8.

 cursor cursor:: 'pointer''pointer'9.

 });});10.

 element element..bindbind(('mousedown''mousedown',, functionfunction((eventevent)) {{11.

 startX startX == eventevent..screenX screenX -- x x;;12.

 startY startY == eventevent..screenY screenY -- y y;;13.

 $document $document..bindbind(('mousemove''mousemove',, mousemove mousemove););14.

 $document $document..bindbind(('mouseup''mouseup',, mouseup mouseup););15.

 });});16.

 17.

 functionfunction mousemove mousemove((eventevent)) {{18.

 y y == eventevent..screenY screenY -- startY startY;;19.

 x x == eventevent..screenX screenX -- startX startX;;20.

 element element..csscss({({21.

 top top:: y y ++ 'px''px',,22.

 left left:: x x ++ 'px''px'23.

 });});24.

 }}25.

 26.

 functionfunction mouseup mouseup()() {{27.

 $document $document..unbindunbind(('mousemove''mousemove',, mousemove mousemove););28.

 $document $document..unbindunbind(('mouseup''mouseup',, mouseup mouseup););29.

 }}30.

 }}31.

 });});32.

Demo

The presence of the draggable attribute on any element gives the element new behavior. The beauty of this approach is

that we have taught the browser a new trick. We have extended the vocabulary of what the browser understands in a way
which is natural to anyone who is familiar with HTML principles.

There are many templating systems out there. Most of them consume a static string template and combine it with data,
resulting in a new string. The resulting text is then innerHTMLed into an element.

This means that any changes to the data need to be re-merged with the template and then innerHTMLed into the DOM.

Some of the issues with this approach are: reading user input and merging it with data, clobbering user input by overwriting
it, managing the whole update process, and lack of behavior expressiveness.

Angular is different. The Angular compiler consumes the DOM with directives, not string templates. The result is a linking
function, which when combined with a scope model results in a live view. The view and scope model bindings are
transparent. No action from the developer is needed to update the view. And because no innerHTML is used there are no

issues of clobbering user input. Furthermore, Angular directives can contain not just text bindings, but behavioral constructs
as well.

The Angular approach produces a stable DOM. This means that the DOM element instance bound to a model item instance
does not change for the lifetime of the binding. This means that the code can get hold of the elements and register event
handlers and know that the reference will not be destroyed by template data merge.

index.html

Developer GuideDeveloper Guide // conceptsconcepts

This document gives a quick overview of the main angular components and how they work together. These are:

startup - bring up hello world
runtime - overview of angular runtime
scope - the glue between the view and the controller
controller - application behavior
model - your application data
view - what the user sees
directives - extend HTML vocabulary
filters - format the data in user locale
injector - assembles your application
module - configures the injector
$ - angular namespace

This is how we get the ball rolling (refer to the diagram and example below):

The browser loads the HTML and parses it into a
DOM

1.

The browser loads angular.js script2.

Angular waits for DOMContentLoaded event3.

Angular looks for ng-app directive, which designates

the application boundary

4.

The Module specified in ng-app (if any) is used to

configure the $injector

5.

The $injector is used to create the $compile

service as well as $rootScope

6.

The $compile service is used to compile the DOM

and link it with $rootScope

7.

The ng-init directive assigns World to the name

property on the scope

8.

The {{name}} interpolates the expression to

Hello World!

9.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 </head></head>5.

 <body><body>6.

 <p<p ng-initng-init==" name='World' "" name='World' ">>Hello {{name}}!Hello {{name}}!</p></p>7.

 </body></body>8.

</html></html>9.

Demo

The diagram and the example below describe how
Angular interacts with the browser's event loop.

The browser's event-loop waits for an event to
arrive. An event is a user interactions, timer
event, or network event (response from a server).

1.

The event's callback gets executed. This enters
the JavaScript context. The callback can modify
the DOM structure.

2.

Once the callback executes, the browser leaves
the JavaScript context and re-renders the view
based on DOM changes.

3.

Angular modifies the normal JavaScript flow by
providing its own event processing loop. This splits the
JavaScript into classical and Angular execution
context. Only operations which are applied in Angular
execution context will benefit from Angular data-binding, exception handling, property watching, etc... You can also use
$apply() to enter Angular execution context from JavaScript. Keep in mind that in most places (controllers, services) $apply
has already been called for you by the directive which is handling the event. An explicit call to $apply is needed only when
implementing custom event callbacks, or when working with a third-party library callbacks.

Enter Angular execution context by calling scope.$apply(stimulusFn). Where stimulusFn is the work you wish

to do in Angular execution context.

1.

Angular executes the stimulusFn(), which typically modifies application state.2.

Angular enters the $digest loop. The loop is made up of two smaller loops which process $evalAsync queue and

the $watch list. The $digest loop keeps iterating until the model stabilizes, which means that the $evalAsync

queue is empty and the $watch list does not detect any changes.

3.

The $evalAsync queue is used to schedule work which needs to occur outside of current stack frame, but before the

browser's view render. This is usually done with setTimeout(0), but the setTimeout(0) approach suffers from

slowness and may cause view flickering since the browser renders the view after each event.

4.

The $watch list is a set of expressions which may have changed since last iteration. If a change is detected then the

$watch function is called which typically updates the DOM with the new value.

5.

Once the Angular $digest loop finishes the execution leaves the Angular and JavaScript context. This is followed by

the browser re-rendering the DOM to reflect any changes.

6.

Here is the explanation of how the Hello wold example achieves the data-binding effect when the user enters text into

the text field.

During the compilation phase:
the ng-model and input directive set up a keydown listener on the <input> control.1.

1.

index.html

index.html style.css script.js

the {{name}} interpolation sets up a $watch to be notified of name changes.2.

During the runtime phase:
Pressing an 'X' key causes the browser to emit a keydown event on the input control.1.

The input directive captures the change to the input's value and calls $apply("name = 'X';") to update the

application model inside the Angular execution context.

2.

Angular applies the name = 'X'; to the model.3.

The $digest loop begins4.

The $watch list detects a change on the name property and notifies the {{name}} interpolation, which in turn

updates the DOM.

5.

Angular exits the execution context, which in turn exits the keydown event and with it the JavaScript execution

context.

6.

The browser re-renders the view with update text.7.

2.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 </head></head>5.

 <body><body>6.

 <input<input ng-modelng-model=="name""name">>7.

 <p><p>Hello {{name}}!Hello {{name}}!</p></p>8.

 </body></body>9.

</html></html>10.

Demo

The scope is responsible for detecting changes to the model section and provides the execution context for expressions.
The scopes are nested in a hierarchical structure which closely follow the DOM structure. (See individual directive
documentation to see which directives cause a creation of new scopes.)

The following example demonstrates how name expression will evaluate into different value depending on which scope it is

evaluated in. The example is followed by a diagram depicting the scope boundaries.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="GreetCtrl""GreetCtrl">>8.

 Hello {{name}}! Hello {{name}}!9.

 </div></div>10.

 <div<div ng-controllerng-controller=="ListCtrl""ListCtrl">>11.

 12.

 <li<li ng-repeatng-repeat=="name in names""name in names">>{{name}}{{name}}13.

 14.

 </div></div>15.

 </body></body>16.

</html></html>17.

style.css :

..showshow--scope scope ..docdoc--exampleexample--livelive..ngng--scopescope,,1.

..showshow--scope scope ..docdoc--exampleexample--live live ..ngng--scope scope {{2.

 border border:: 1px1px solid red solid red;;3.

 margin margin:: 3px3px;;4.

}}5.

script.js :

functionfunction GreetCtrlGreetCtrl(($scope$scope)) {{1.

 $scope $scope..name name == 'World''World';;2.

}}3.

 4.

functionfunction ListCtrlListCtrl(($scope$scope)) {{5.

 $scope $scope..names names == [['Igor''Igor',, 'Misko''Misko',, 'Vojta''Vojta'];];6.

}}7.

Demo

index.html script.js

A controller is the code behind the
view. Its job is to construct the model
and publish it to the view along with
callback methods. The view is a
projection of the scope onto the
template (the HTML). The scope is
the glue which marshals the model to
the view and forwards the events to
the controller.

The separation of the controller and
the view is important because:

The controller is written in
JavaScript. JavaScript is
imperative. Imperative is a good
fit for specifying application
behavior. The controller should
not contain any rendering
information (DOM references or HTML fragments).
The view template is written in HTML. HTML is declarative. Declarative is a good fit for specifying UI. The View should
not contain any behavior.
Since the controller is unaware of the view, there could be many views for the same controller. This is important for
re-skinning, device specific views (i.e. mobile vs desktop), and testability.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="MyCtrl""MyCtrl">>8.

 Hello {{name}}! Hello {{name}}!9.

 <button<button ng-clickng-click=="action()""action()">>10.

 OK OK11.

 </button></button>12.

 </div></div>13.

 </body></body>14.

</html></html>15.

script.js :

functionfunction MyCtrlMyCtrl(($scope$scope)) {{1.

 $scope $scope..action action == functionfunction()() {{2.

 $scope $scope..name name == 'OK''OK';;3.

 }}4.

 5.

 $scope $scope..name name == 'World''World';;6.

}}7.

Demo

The model is the data which is used
merged with the template to produce the
view. To be able to render the model into
the view, the model has to be able to be
referenced from the scope. Unlike many
other frameworks Angular makes no
restrictions or requirements an the model.
There are no classes to inherit from or
special accessor methods for accessing
or changing the model. The model can be
primitive, object hash, or a full object
Type. In short the model is a plain
JavaScript object.

index.html

The view is what the users sees. The view begins its
life as a template, it is merged with the model and
finally rendered into the browser DOM. Angular takes a
very different approach to rendering the view,
compared to most other templating systems.

Others - Most templating systems begin as an
HTML string with special templating markup. Often
the template markup breaks the HTML syntax
which means that the template can not be edited
by an HTML editor. The template string is then
parsed by the template engine, and merged with
the data. The result of the merge is an HTML
string. The HTML string is then written to the
browser using the .innerHTML, which causes the

browser to render the HTML. When the model
changes the whole process needs to be repeated.
The granularity of the template is the granularity of
the DOM updates. The key here is that the templating system manipulates strings.
Angular - Angular is different, since its templating system works on DOM objects not on strings. The template is still
written in an HTML string, but it is HTML (not HTML with template sprinkled in.) The browser parses the HTML into the
DOM, and the DOM becomes the input to the template engine known as the compiler. The compiler looks for

directives which in turn set up watches on the model. The result is a continuously updating view which does not need

template model re-merging. Your model becomes the single source-of-truth for your view.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 </head></head>5.

 <body><body>6.

 <div<div ng-initng-init=="list = ['Chrome', 'Safari', 'Firefox', 'IE'] ""list = ['Chrome', 'Safari', 'Firefox', 'IE'] ">>7.

 <input<input ng-modelng-model=="list""list" ng-listng-list>>

8.

 <input<input ng-modelng-model=="list""list" ng-listng-list>>

9.

 <pre><pre>list={{list}}list={{list}}</pre></pre>

10.

 11.

 <li<li ng-repeatng-repeat=="item in list""item in list">>12.

 {{item}} {{item}}13.

 14.

 15.

 </div></div>16.

 </body></body>17.

</html></html>18.

index.html style.css script.js

Demo

A directive is a behavior or DOM transformation which is triggered by the presence of a custom attribute, element name, or
a class name. A directive allows you to extend the HTML vocabulary in a declarative fashion. Following is an example which
enables data-binding for the contenteditable in HTML.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="directive""directive">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div contentEditablecontentEditable=="true""true" ng-modelng-model=="content""content">>Edit MeEdit Me</div></div>8.

 <pre><pre>model = {{content}}model = {{content}}</pre></pre>9.

 </body></body>10.

</html></html>11.

style.css :

divdiv[[contentEditablecontentEditable]] {{1.

 cursor cursor:: pointer pointer;;2.

 background background--colorcolor:: #D0D0D0;#D0D0D0;3.

 margin margin--bottombottom:: 1em1em;;4.

 padding padding:: 1em1em;;5.

}}6.

script.js :

angularangular..modulemodule(('directive''directive',, []).[]).directivedirective(('contenteditable''contenteditable',, functionfunction()() {{1.

index.html

 returnreturn {{2.

 requirerequire:: 'ngModel''ngModel',,3.

 link link:: functionfunction((scopescope,, elm elm,, attrs attrs,, ctrl ctrl)) {{4.

 // view -> model// view -> model5.

 elm elm..bindbind(('blur''blur',, functionfunction()() {{6.

 scope scope..$apply$apply((functionfunction()() {{7.

 ctrl ctrl..$setViewValue$setViewValue((elmelm..htmlhtml());());8.

 });});9.

 });});10.

 11.

 // model -> view// model -> view12.

 ctrl ctrl..$render $render == functionfunction((valuevalue)) {{13.

 elm elm..htmlhtml((valuevalue););14.

 };};15.

 16.

 // load init value from DOM// load init value from DOM17.

 ctrl ctrl..$setViewValue$setViewValue((elmelm..htmlhtml());());18.

 }}19.

 };};20.

});});21.

Demo

Filters perform data transformation. Typically they are used in conjunction with the locale to format the data in locale

specific output. They follow the spirit of UNIX filters and use similar syntax | (pipe).

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 </head></head>5.

 <body><body>6.

 <div<div ng-initng-init=="list = ['Chrome', 'Safari', 'Firefox', 'IE'] ""list = ['Chrome', 'Safari', 'Firefox', 'IE'] ">>7.

 Number formatting: {{ 1234567890 | number }} Number formatting: {{ 1234567890 | number }}

8.

 array filtering array filtering <input<input ng-modelng-model=="predicate""predicate">>9.

 {{ list | filter:predicate | json }} {{ list | filter:predicate | json }}10.

 </div></div>11.

 </body></body>12.

</html></html>13.

Demo

The injector is a service locator. There is a single

injector per Angular application. The injector

provides a way to look up an object instance by its name.
The injector keeps an internal cache of all objects so that
repeated calls to get the same object name result in the
same instance. If the object does not exist, then the
injector asks the instance factory to create a new

instance.

A module is a way to configure the injector's instance

factory, known as a provider.

// Create a module// Create a module1.

varvar myModule myModule == angular angular..modulemodule(('myModule''myModule',, [])[])2.

 3.

// Configure the injector// Configure the injector4.

myModulemyModule..factoryfactory(('serviceA''serviceA',, functionfunction()() {{5.

 returnreturn {{6.

 // instead of {}, put your object creation here// instead of {}, put your object creation here7.

 };};8.

});});9.

 10.

// create an injector and configure it from 'myModule'// create an injector and configure it from 'myModule'11.

varvar $injector $injector == angular angular..injectorinjector([(['myModule''myModule']);]);12.

 13.

// retrieve an object from the injector by name// retrieve an object from the injector by name14.

varvar serviceA serviceA == $injector $injector..getget(('serviceA''serviceA'););15.

 16.

// always true because of instance cache// always true because of instance cache17.

$injector$injector..getget(('serviceA''serviceA')) ====== $injector $injector..getget(('serviceA''serviceA'););18.

But the real magic of the injector is that it can be used to call methods and instantiate types. This subtle feature

index.html script.js

is what allows the methods and types to ask for their dependencies instead of having to look for them.

// You write functions such as this one.// You write functions such as this one.1.

functionfunction doSomething doSomething((serviceAserviceA,, serviceB serviceB)) {{2.

 // do something here.// do something here.3.

}}4.

 5.

// Angular provides the injector for your application// Angular provides the injector for your application6.

varvar $injector $injector == ...;...;7.

 8.

//9.

// the old-school way of getting dependencies.// the old-school way of getting dependencies.10.

varvar serviceA serviceA == $injector $injector..getget(('serviceA''serviceA'););11.

varvar serviceB serviceB == $injector $injector..getget(('serviceB''serviceB'););12.

 13.

// now call the function// now call the function14.

doSomethingdoSomething((serviceAserviceA,, serviceB serviceB););15.

 16.

//17.

// the cool way of getting dependencies.// the cool way of getting dependencies.18.

// the $injector will supply the arguments to the function automatically// the $injector will supply the arguments to the function automatically19.

$injector$injector..invokeinvoke((doSomethingdoSomething);); // This is how the framework calls your functions// This is how the framework calls your functions20.

Notice that the only thing you needed to write was the function, and list the dependencies in the function arguments. When
angular calls the function, it will use the call which will automatically fill the function arguments.

Examine the ClockCtrl bellow, and notice how it lists the dependencies in the constructor. When the ng-controller

instantiates the controller it automatically provides the dependencies. There is no need to create dependencies, look for
dependencies, or even get a reference to the injector.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="timeExampleModule""timeExampleModule">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="ClockCtrl""ClockCtrl">>8.

 Current time is: {{ time.now }} Current time is: {{ time.now }}9.

 </div></div>10.

 </body></body>11.

</html></html>12.

script.js :

angularangular..modulemodule(('timeExampleModule''timeExampleModule',, []).[]).1.

 // Declare new object called time,// Declare new object called time,2.

 // which will be available for injection// which will be available for injection3.

 factory factory(('time''time',, functionfunction(($timeout$timeout)) {{4.

 varvar time time == {};{};5.

 6.

 ((functionfunction tick tick()() {{7.

 time time..now now == newnew DateDate().().toStringtoString();();8.

 $timeout $timeout((ticktick,, 10001000););9.

 })();})();10.

 returnreturn time time;;11.

 });});12.

 13.

// Notice that you can simply ask for time// Notice that you can simply ask for time14.

// and it will be provided. No need to look for it.// and it will be provided. No need to look for it.15.

functionfunction ClockCtrlClockCtrl(($scope$scope,, time time)) {{16.

 $scope $scope..time time == time time;;17.

}}18.

Demo

To prevent accidental name collision, Angular prefixes names of objects which could potentially collide with $. Please do not

use the $ prefix in your code as it may accidentally collide with Angular code.

index.html script.js End to end test

Developer GuideDeveloper Guide // directivedirective

Directives are a way to teach HTML new tricks. During DOM compilation directives are matched against the HTML and
executed. This allows directives to register behavior, or transform the DOM.

Angular comes with a built in set of directives which are useful for building web applications but can be extended such that
HTML can be turned into a declarative domain specific language (DSL).

Directives have camel cased names such as ngBind. The directive can be invoked by translating the camel case name into

snake case with these special characters :, -, or _. Optionally the directive can be prefixed with x-, or data- to make it

HTML validator compliant. Here is a list of some of the possible directive names: ng:bind, ng-bind, ng_bind,

x-ng-bind and data-ng-bind.

The directives can be placed in element names, attributes, class names, as well as comments. Here are some equivalent
examples of invoking myDir. (However, most directives are restricted to attribute only.)

<span>1.

<span>2.

<my-dir></my-dir><my-dir></my-dir>3.

<!-- directive: my-dir exp --><!-- directive: my-dir exp -->4.

Directives can be invoked in many different ways, but are equivalent in the end result as shown in the following example.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="Ctrl1""Ctrl1">>8.

 Hello Hello <input<input ng-modelng-model=='name''name'>> <hr/><hr/>9.

 <span>

10.

 <span>

11.

 <span>

12.

 <span>

13.

 <span>

14.

 </div></div>15.

 </body></body>16.

</html></html>17.

script.js :

functionfunction Ctrl1Ctrl1(($scope$scope)) {{1.

 $scope $scope..name name == 'angular''angular';;2.

}}3.

End to end test :

itit(('should show off bindings''should show off bindings',, functionfunction()() {{1.

 expect expect((elementelement(('div[ng-controller="Ctrl1"] span[ng-bind]''div[ng-controller="Ctrl1"] span[ng-bind]').).texttext()).()).toBetoBe(('angular''angular'););2.

});});3.

Demo

During the compilation process the compiler matches text and attributes using the $interpolate service to see if they

contain embedded expressions. These expressions are registered as watches and will update as part of normal digest

cycle. An example of interpolation is shown here:

<a>Hello {{username}}!Hello {{username}}!1.

Compilation of HTML happens in three phases:

First the HTML is parsed into DOM using the standard browser API. This is important to realize because the templates
must be parsable HTML. This is in contrast to most templating systems that operate on strings, rather than on DOM
elements.

1.

The compilation of the DOM is performed by the call to the $compile() method. The method traverses the DOM and

matches the directives. If a match is found it is added to the list of directives associated with the given DOM element.
Once all directives for a given DOM element have been identified they are sorted by priority and their compile()

functions are executed. The directive compile function has a chance to modify the DOM structure and is responsible for
producing a link() function explained next. The $compile() method returns a combined linking function, which is a

collection of all of the linking functions returned from the individual directive compile functions.

2.

Link the template with scope by calling the linking function returned from the previous step. This in turn will call the
linking function of the individual directives allowing them to register any listeners on the elements and set up any
watches with the scope. The result of this is a live binding between the scope and the DOM. A change in the scope

is reflected in the DOM.

3.

varvar $compile $compile == ...;...; // injected into your code// injected into your code1.

varvar scope scope == ...;...;2.

 3.

varvar html html == '<div ng-bind=''<div ng-bind='expexp'></div>''></div>';;4.

 5.

// Step 1: parse HTML into DOM element// Step 1: parse HTML into DOM element6.

varvar templatetemplate == angular angular..elementelement((htmlhtml););7.

 8.

// Step 2: compile the template// Step 2: compile the template9.

varvar linkFn linkFn == $compile $compile((templatetemplate););10.

 11.

// Step 3: link the compiled template with the scope.// Step 3: link the compiled template with the scope.12.

linkFnlinkFn((scopescope););13.

Reasons behind the compile/link separation
At this point you may wonder why the compile process is broken down to a compile and link phase. To understand this, let's
look at a real world example with a repeater:

HelloHello {{{{useruser}},}}, you have these actions you have these actions::1.

2.

 <<li ngli ng--repeatrepeat=="action in user.actions""action in user.actions">>3.

 {{{{actionaction..descriptiondescription}}}}4.

 </li>5.

</</ulul>>6.

The short answer is that compile and link separation is needed any time a change in model causes a change in DOM
structure such as in repeaters.

When the above example is compiled, the compiler visits every node and looks for directives. The {{user}} is an example

of an interpolation directive. ngRepeat is another directive. But ngRepeat has a dilemma. It needs to be able to

quickly stamp out new lis for every action in user.actions. This means that it needs to save a clean copy of the li

element for cloning purposes and as new actions are inserted, the template li element needs to be cloned and inserted

into ul. But cloning the li element is not enough. It also needs to compile the li so that its directives such as

{{action.descriptions}} evaluate against the right scope. A naive method would be to simply insert a copy of the

li element and then compile it. But compiling on every li element clone would be slow, since the compilation requires that

we traverse the DOM tree and look for directives and execute them. If we put the compilation inside a repeater which
needs to unroll 100 items we would quickly run into performance problems.

The solution is to break the compilation process into two phases; the compile phase where all of the directives are
identified and sorted by priority, and a linking phase where any work which links a specific instance of the scope and the

specific instance of an li is performed.

ngRepeat works by preventing the compilation process from descending into the li element. Instead the ngRepeat

directive compiles li separately. The result of the li element compilation is a linking function which contains all of the

directives contained in the li element, ready to be attached to a specific clone of the li element. At runtime the

ngRepeat watches the expression and as items are added to the array it clones the li element, creates a new scope for

the cloned li element and calls the link function on the cloned li.

Summary:

compile function - The compile function is relatively rare in directives, since most directives are concerned with working
with a specific DOM element instance rather than transforming the template DOM element. Any operation which can be
shared among the instance of directives should be moved to the compile function for performance reasons.

link function - It is rare for the directive not to have a link function. A link function allows the directive to register

index.html script.js

listeners to the specific cloned DOM element instance as well as to copy content into the DOM from the scope.

In this example we will build a directive that displays the current time.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="time""time">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="Ctrl2""Ctrl2">>8.

 Date format: Date format: <input<input ng-modelng-model=="format""format">> <hr/><hr/>9.

 Current time is: Current time is: <span>10.

 </div></div>11.

 </body></body>12.

</html></html>13.

script.js :

functionfunction Ctrl2Ctrl2(($scope$scope)) {{1.

 $scope $scope..format format == 'M/d/yy h:mm:ss a''M/d/yy h:mm:ss a';;2.

}}3.

 4.

angularangular..modulemodule(('time''time',, [])[])5.

 // Register the 'myCurrentTime' directive factory method.// Register the 'myCurrentTime' directive factory method.6.

 // We inject $timeout and dateFilter service since the factory method is DI.// We inject $timeout and dateFilter service since the factory method is DI.7.

 ..directivedirective(('myCurrentTime''myCurrentTime',, functionfunction(($timeout$timeout,, dateFilter dateFilter)) {{8.

 // return the directive link function. (compile function not needed)// return the directive link function. (compile function not needed)9.

 returnreturn functionfunction((scopescope,, element element,, attrs attrs)) {{10.

 varvar format format,, // date format// date format11.

 timeoutId timeoutId;; // timeoutId, so that we can cancel the time updates// timeoutId, so that we can cancel the time updates12.

 13.

 // used to update the UI// used to update the UI14.

 functionfunction updateTime updateTime()() {{15.

 element element..texttext((dateFilterdateFilter((newnew DateDate(),(), format format));));16.

 }}17.

 18.

 // watch the expression, and update the UI on change.// watch the expression, and update the UI on change.19.

 scope scope..$watch$watch((attrsattrs..myCurrentTimemyCurrentTime,, functionfunction((valuevalue)) {{20.

 format format == value value;;21.

 updateTime updateTime();();22.

 });});23.

 24.

 // schedule update in one second// schedule update in one second25.

 functionfunction updateLater updateLater()() {{26.

 // save the timeoutId for canceling// save the timeoutId for canceling27.

 timeoutId timeoutId == $timeout $timeout((functionfunction()() {{28.

 updateTime updateTime();(); // update DOM// update DOM29.

 updateLater updateLater();(); // schedule another update// schedule another update30.

 },}, 10001000););31.

 }}32.

 33.

 // listen on DOM destroy (removal) event, and cancel the next UI update// listen on DOM destroy (removal) event, and cancel the next UI update34.

 // to prevent updating time ofter the DOM element was removed.// to prevent updating time ofter the DOM element was removed.35.

 element element..bindbind(('$destroy''$destroy',, functionfunction()() {{36.

 $timeout $timeout..cancelcancel((timeoutIdtimeoutId););37.

 });});38.

 39.

 updateLater updateLater();(); // kick off the UI update process.// kick off the UI update process.40.

 }}41.

 });});42.

Demo

An example skeleton of the directive is shown here, for the complete list see below.

varvar myModule myModule == angular angular..modulemodule(...);(...);1.

 2.

myModulemyModule..directivedirective(('directiveName''directiveName',, functionfunction factory factory((injectablesinjectables)) {{3.

 varvar directiveDefinitionObject directiveDefinitionObject == {{4.

 priority priority:: 00,,5.

 templatetemplate:: '<div></div>''<div></div>',,6.

 templateUrl templateUrl:: 'directive.html''directive.html',,7.

 replace replace:: falsefalse,,8.

 transclude transclude:: falsefalse,,9.

 restrict restrict:: 'A''A',,10.

 scope scope:: falsefalse,,11.

 compile compile:: functionfunction compile compile((tElementtElement,, tAttrs tAttrs,, transclude transclude)) {{12.

 returnreturn {{13.

 pre pre:: functionfunction preLink preLink((scopescope,, iElement iElement,, iAttrs iAttrs,, controller controller)) {{ },},14.

 post post:: functionfunction postLink postLink((scopescope,, iElement iElement,, iAttrs iAttrs,, controller controller)) {{ }}15.

 }}16.

 },},17.

 link link:: functionfunction postLink postLink((scopescope,, iElement iElement,, iAttrs iAttrs)) {{ }}18.

 };};19.

 returnreturn directiveDefinitionObject directiveDefinitionObject;;20.

});});21.

In most cases you will not need such fine control and so the above can be simplified. All of the different parts of this
skeleton are explained in following sections. In this section we are interested only in some of this skeleton.

The first step in simplyfing the code is to rely on the default values. Therefore the above can be simplified as:

varvar myModule myModule == angular angular..modulemodule(...);(...);1.

 2.

myModulemyModule..directivedirective(('directiveName''directiveName',, functionfunction factory factory((injectablesinjectables)) {{3.

 varvar directiveDefinitionObject directiveDefinitionObject == {{4.

 compile compile:: functionfunction compile compile((tElementtElement,, tAttrs tAttrs)) {{5.

 returnreturn functionfunction postLink postLink((scopescope,, iElement iElement,, iAttrs iAttrs)) {{ }}6.

 }}7.

 };};8.

 returnreturn directiveDefinitionObject directiveDefinitionObject;;9.

});});10.

Most directives concern themselves only with instances, not with template transformations, allowing further simplification:

varvar myModule myModule == angular angular..modulemodule(...);(...);1.

 2.

myModulemyModule..directivedirective(('directiveName''directiveName',, functionfunction factory factory((injectablesinjectables)) {{3.

 returnreturn functionfunction postLink postLink((scopescope,, iElement iElement,, iAttrs iAttrs)) {{ }}4.

});});5.

Factory method
The factory method is responsible for creating the directive. It is invoked only once, when the compiler matches the

directive for the first time. You can perform any initialization work here. The method is invoked using the
$injector.invoke which makes it injectable following all of the rules of injection annotation.

Directive Definition Object
The directive definition object provides instructions to the compiler. The attributes are:

name - Name of the current scope. Optional and defaults to the name at registration.

priority - When there are multiple directives defined on a single DOM element, sometimes it is necessary to specify

the order in which the directives are applied. The priority is used to sort the directives before their compile

functions get called. Higher priority goes first. The order of directives within the same priority is undefined.

terminal - If set to true then the current priority will be the last set of directives which will execute (any directives

at the current priority will still execute as the order of execution on same priority is undefined).

scope - If set to:

true - then a new scope will be created for this directive. If multiple directives on the same element request a

new scope, only one new scope is created. The new scope rule does not apply for the root of the template since
the root of the template always gets a new scope.

{} (object hash) - then a new 'isolate' scope is created. The 'isolate' scope differs from normal scope in that it

does not prototypically inherit from the parent scope. This is useful when creating reusable components, which
should not accidentally read or modify data in the parent scope.

The 'isolate' scope takes an object hash which defines a set of local scope properties derived from the parent
scope. These local properties are useful for aliasing values for templates. Locals definition is a hash of local scope
property to its source:

@ or @attr - bind a local scope property to the value of DOM attribute. The result is always a string since

DOM attributes are strings. If no attr name is specified then the attribute name is assumed to be the same

as the local name. Given <widget my-attr="hello {{name}}"> and widget definition of scope: {

localName:'@myAttr' }, then widget scope property localName will reflect the interpolated value of

hello {{name}}. As the name attribute changes so will the localName property on the widget scope. The

name is read from the parent scope (not component scope).

= or =attr - set up bi-directional binding between a local scope property and the parent scope property of

name defined via the value of the attr attribute. If no attr name is specified then the attribute name is

assumed to be the same as the local name. Given <widget my-attr="parentModel"> and widget

definition of scope: { localModel:'=myAttr' }, then widget scope property localModel will reflect

the value of parentModel on the parent scope. Any changes to parentModel will be reflected in

localModel and any changes in localModel will reflect in parentModel.

& or &attr - provides a way to execute an expression in the context of the parent scope. If no attr name is

specified then the attribute name is assumed to be the same as the local name. Given <widget

my-attr="count = count + value"> and widget definition of scope: { localFn:'&myAttr' },

then isolate scope property localFn will point to a function wrapper for the count = count + value

expression. Often it's desirable to pass data from the isolated scope via an expression and to the parent
scope, this can be done by passing a map of local variable names and values into the expression wrapper fn.
For example, if the expression is increment(amount) then we can specify the amount value by calling the

localFn as localFn({amount: 22}).

controller - Controller constructor function. The controller is instantiated before the pre-linking phase and it is

shared with other directives if they request it by name (see require attribute). This allows the directives to

communicate with each other and augment each other's behavior. The controller is injectable with the following locals:

$scope - Current scope associated with the element

$element - Current element

$attrs - Current attributes obeject for the element

$transclude - A transclude linking function pre-bound to the correct transclusion scope:

function(cloneLinkingFn).

require - Require another controller be passed into current directive linking function. The require takes a name of

the directive controller to pass in. If no such controller can be found an error is raised. The name can be prefixed with:

? - Don't raise an error. This makes the require dependency optional.

^ - Look for the controller on parent elements as well.

restrict - String of subset of EACM which restricts the directive to a specific directive declaration style. If omitted

directives are allowed on attributes only.

E - Element name: <my-directive></my-directive>

A - Attribute: <div my-directive="exp"> </div>

C - Class: <div class="my-directive: exp;"></div>

M - Comment: <!-- directive: my-directive exp -->

template - replace the current element with the contents of the HTML. The replacement process migrates all of the

attributes / classes from the old element to the new one. See Creating Widgets section below for more information.

templateUrl - Same as template but the template is loaded from the specified URL. Because the template loading

is asynchronous the compilation/linking is suspended until the template is loaded.

replace - if set to true then the template will replace the current element, rather than append the template to the

element.

transclude - compile the content of the element and make it available to the directive. Typically used with

ngTransclude. The advantage of transclusion is that the linking function receives a transclusion function which is

pre-bound to the correct scope. In a typical setup the widget creates an isolate scope, but the transclusion is not a

child, but a sibling of the isolate scope. This makes it possible for the widget to have private state, and the

transclusion to be bound to the parent (pre-isolate) scope.

true - transclude the content of the directive.

'element' - transclude the whole element including any directives defined at lower priority.

compile: This is the compile function described in the section below.

link: This is the link function described in the section below. This property is used only if the compile property is not

defined.

Compile function

functionfunction compile compile((tElementtElement,, tAttrs tAttrs,, transclude transclude)) {{ }}1.

The compile function deals with transforming the template DOM. Since most directives do not do template transformation, it
is not used often. Examples that require compile functions are directives that transform template DOM, such as ngRepeat,

or load the contents asynchronously, such as ngView. The compile function takes the following arguments.

tElement - template element - The element where the directive has been declared. It is safe to do template

transformation on the element and child elements only.

tAttrs - template attributes - Normalized list of attributes declared on this element shared between all directive

compile functions. See Attributes.

transclude - A transclude linking function: function(scope, cloneLinkingFn).

NOTE: The template instance and the link instance may not be the same objects if the template has been cloned. For this
reason it is not safe in the compile function to do anything other than DOM transformation that applies to all DOM clones.
Specifically, DOM listener registration should be done in a linking function rather than in a compile function.

A compile function can have a return value which can be either a function or an object.

returning a function - is equivalent to registering the linking function via the link property of the config object when the

compile function is empty.

returning an object with function(s) registered via pre and post properties - allows you to control when a linking

function should be called during the linking phase. See info about pre-linking and post-linking functions below.

Linking function

functionfunction link link((scopescope,, iElement iElement,, iAttrs iAttrs,, controller controller)) {{ }}1.

The link function is responsible for registering DOM listeners as well as updating the DOM. It is executed after the template
has been cloned. This is where most of the directive logic will be put.

scope - Scope - The scope to be used by the directive for registering watches.

iElement - instance element - The element where the directive is to be used. It is safe to manipulate the children of

the element only in postLink function since the children have already been linked.

iAttrs - instance attributes - Normalized list of attributes declared on this element shared between all directive linking

functions. See Attributes.

controller - a controller instance - A controller instance if at least one directive on the element defines a controller.

The controller is shared among all the directives, which allows the directives to use the controllers as a communication
channel.

Pre-linking function
Executed before the child elements are linked. Not safe to do DOM transformation since the compiler linking function will fail
to locate the correct elements for linking.

Post-linking function
Executed after the child elements are linked. It is safe to do DOM transformation in the post-linking function.

Attributes
The Attributes object - passed as a parameter in the link() or compile() functions - is a way of accessing:

normalized attribute names: Since a directive such as 'ngBind' can be expressed in many ways such as 'ng:bind', or
'x-ng-bind', the attributes object allows for normalized accessed to the attributes.

directive inter-communication: All directives share the same instance of the attributes object which allows the
directives to use the attributes object as inter directive communication.

supports interpolation: Interpolation attributes are assigned to the attribute object allowing other directives to read the
interpolated value.

observing interpolated attributes: Use $observe to observe the value changes of attributes that contain interpolation

(e.g. src="{{bar}}"). Not only is this very efficient but it's also the only way to easily get the actual value because

during the linking phase the interpolation hasn't been evaluated yet and so the value is at this time set to undefined.

functionfunction linkingFn linkingFn((scopescope,, elm elm,, attrs attrs,, ctrl ctrl)) {{1.

 // get the attribute value// get the attribute value2.

 console console..loglog((attrsattrs..ngModelngModel););3.

 4.

 // change the attribute// change the attribute5.

 attrs attrs..setset(('ngModel''ngModel',, 'new value''new value'););6.

 7.

 // observe changes to interpolated attribute// observe changes to interpolated attribute8.

 attrs attrs..$observe$observe(('ngModel''ngModel',, functionfunction((valuevalue)) {{9.

 console console..loglog(('ngModel has changed value to ''ngModel has changed value to ' ++ value value););10.

 });});11.

}}12.

It is often desirable to have reusable components. Below is a pseudo code showing how a simplified dialog component may
work.

<div><div>1.

 <button<button ng-clickng-click=="show=true""show=true">>showshow</button></button>2.

 <dialog<dialog titletitle=="Hello {{username}}.""Hello {{username}}."3.

 visiblevisible=="show""show"4.

 on-cancelon-cancel=="show = false""show = false"5.

 on-okon-ok=="show = false; doSomething()""show = false; doSomething()">>6.

 Body goes here: {{username}} is {{title}}. Body goes here: {{username}} is {{title}}.7.

 </dialog></dialog>8.

</div></div>9.

Clicking on the "show" button will open the dialog. The dialog will have a title, which is data bound to username, and it will

also have a body which we would like to transclude into the dialog.

Here is an example of what the template definition for the dialog widget may look like.

<div<div ng-showng-show=="visible""visible">>1.

 <h3><h3>{{title}}{{title}}</h3></h3>2.

 <div<div classclass=="body""body" ng-transcludeng-transclude></div>></div>3.

 <div<div classclass=="footer""footer">>4.

 <button<button ng-clickng-click=="onOk()""onOk()">>Save changesSave changes</button></button>5.

 <button<button ng-clickng-click=="onCancel()""onCancel()">>CloseClose</button></button>6.

 </div></div>7.

</div></div>8.

This will not render properly, unless we do some scope magic.

The first issue we have to solve is that the dialog box template expects title to be defined, but the place of instantiation

would like to bind to username. Furthermore the buttons expect the onOk and onCancel functions to be present in the

scope. This limits the usefulness of the widget. To solve the mapping issue we use the locals to create local variables

which the template expects as follows:

scopescope:: {{1.

 title title:: '@''@',, // the title uses the data-binding from the parent scope// the title uses the data-binding from the parent scope2.

 onOk onOk:: '&''&',, // create a delegate onOk function// create a delegate onOk function3.

 onCancel onCancel:: '&''&',, // create a delegate onCancel function// create a delegate onCancel function4.

 visible visible:: '=''=' // set up visible to accept data-binding// set up visible to accept data-binding5.

}}6.

Creating local properties on widget scope creates two problems:

isolation - if the user forgets to set title attribute of the dialog widget the dialog template will bind to parent scope

property. This is unpredictable and undesirable.

1.

transclusion - the transcluded DOM can see the widget locals, which may overwrite the properties which the
transclusion needs for data-binding. In our example the title property of the widget clobbers the title property of

the transclusion.

2.

To solve the issue of lack of isolation, the directive declares a new isolated scope. An isolated scope does not

prototypically inherit from the child scope, and therefore we don't have to worry about accidentally clobbering any
properties.

However isolated scope creates a new problem: if a transcluded DOM is a child of the widget isolated scope then it will

not be able to bind to anything. For this reason the transcluded scope is a child of the original scope, before the widget

index.html style.css script.js End to end test

created an isolated scope for its local variables. This makes the transcluded and widget isolated scope siblings.

This may seem to be unexpected complexity, but it gives the widget user and developer the least surprise.

Therefore the final directive definition looks something like this:

transcludetransclude:: truetrue,,1.

scopescope:: {{2.

 title title:: '@''@',, // the title uses the data-binding from the parent scope// the title uses the data-binding from the parent scope3.

 onOk onOk:: '&''&',, // create a delegate onOk function// create a delegate onOk function4.

 onCancel onCancel:: '&''&',, // create a delegate onCancel function// create a delegate onCancel function5.

 visible visible:: '=''=' // set up visible to accept data-binding// set up visible to accept data-binding6.

},},7.

restrictrestrict:: 'E''E',,8.

replacereplace:: truetrue9.

It is often desirable to replace a single directive with a more complex DOM structure. This allows the directives to become
a short hand for reusable components from which applications can be built.

Following is an example of building a reusable widget.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="zippyModule""zippyModule">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="Ctrl3""Ctrl3">>8.

 Title: Title: <input<input ng-modelng-model=="title""title">>

9.

 Text: Text: <textarea<textarea ng-modelng-model=="text""text"></textarea>></textarea>10.

 <hr><hr>11.

 <div<div classclass=="zippy""zippy" zippy-titlezippy-title=="Details: {{title}}...""Details: {{title}}...">>{{text}}{{text}}</div></div>12.

 </div></div>13.

 </body></body>14.

</html></html>15.

style.css :

..zippy zippy {{1.

 border border:: 1px1px solid black solid black;;2.

 display display:: inlineinline--blockblock;;3.

 width width:: 250px250px;;4.

}}5.

..zippyzippy..opened opened >> ..titletitle::before before {{ content content:: '▼ ''▼ ';; }}6.

..zippyzippy..opened opened >> ..body body {{ display display:: block block;; }}7.

..zippyzippy..closed closed >> ..titletitle::before before {{ content content:: '► ''► ';; }}8.

..zippyzippy..closed closed >> ..body body {{ display display:: none none;; }}9.

..zippy zippy >> ..title title {{10.

 background background--colorcolor:: black black;;11.

 color color:: white white;;12.

 padding padding:: ..1em1em ..3em3em;;13.

 cursor cursor:: pointer pointer;;14.

}}15.

..zippy zippy >> ..body body {{16.

 padding padding:: ..1em1em ..3em3em;;17.

}}18.

script.js :

functionfunction Ctrl3Ctrl3(($scope$scope)) {{1.

 $scope $scope..title title == 'Lorem Ipsum''Lorem Ipsum';;2.

 $scope $scope..text text == 'Neque porro quisquam est qui dolorem ipsum quia dolor...''Neque porro quisquam est qui dolorem ipsum quia dolor...';;3.

}}4.

 5.

angularangular..modulemodule(('zippyModule''zippyModule',, [])[])6.

 ..directivedirective(('zippy''zippy',, functionfunction(){(){7.

 returnreturn {{8.

 restrict restrict:: 'C''C',,9.

 // This HTML will replace the zippy directive.// This HTML will replace the zippy directive.10.

 replace replace:: truetrue,,11.

 transclude transclude:: truetrue,,12.

 scope scope:: {{ title title::'@zippyTitle''@zippyTitle' },},13.

 templatetemplate:: '<div>''<div>' ++14.

 '<div class="title">{{title}}</div>''<div class="title">{{title}}</div>' ++15.

 '<div class="body" ng-transclude></div>''<div class="body" ng-transclude></div>' ++16.

 '</div>''</div>',,17.

 // The linking function will add behavior to the template// The linking function will add behavior to the template18.

 link link:: functionfunction((scopescope,, element element,, attrs attrs)) {{19.

 // Title element// Title element20.

 varvar title title == angular angular..elementelement((elementelement..childrenchildren()[()[00]),]),21.

 // Opened / closed state// Opened / closed state22.

 opened opened == truetrue;;23.

 24.

 // Clicking on title should open/close the zippy// Clicking on title should open/close the zippy25.

 title title..bindbind(('click''click',, toggle toggle););26.

 27.

 // Toggle the closed/opened state// Toggle the closed/opened state28.

 functionfunction toggle toggle()() {{29.

 opened opened == !!openedopened;;30.

 element element..removeClassremoveClass((opened opened ?? 'closed''closed' :: 'opened''opened'););31.

 element element..addClassaddClass((opened opened ?? 'opened''opened' :: 'closed''closed'););32.

 }}33.

 34.

 // initialize the zippy// initialize the zippy35.

 toggle toggle();();36.

 }}37.

 }}38.

 });});39.

End to end test :

itit(('should bind and open / close''should bind and open / close',, functionfunction()() {{1.

 input input(('title''title').).enterenter(('TITLE''TITLE'););2.

 input input(('text''text').).enterenter(('TEXT''TEXT'););3.

 expect expect((elementelement(('.title''.title').).texttext()).()).toEqualtoEqual(('Details: TITLE...''Details: TITLE...'););4.

 expect expect((bindingbinding(('text''text')).)).toEqualtoEqual(('TEXT''TEXT'););5.

 6.

 expect expect((elementelement(('.zippy''.zippy').).propprop(('className''className')).)).toMatchtoMatch((/closed//closed/););7.

 element element(('.zippy > .title''.zippy > .title').).clickclick();();8.

 expect expect((elementelement(('.zippy''.zippy').).propprop(('className''className')).)).toMatchtoMatch((/opened//opened/););9.

});});10.

Demo

index.html End to end test

Developer GuideDeveloper Guide // expressionexpression

Expressions are JavaScript-like code snippets that are usually placed in bindings such as {{ expression }}.

Expressions are processed by $parse service.

For example, these are all valid expressions in angular:

1+2

3*10 | currency

user.name

Angular Expressions vs. JS Expressions
It might be tempting to think of Angular view expressions as JavaScript expressions, but that is not entirely correct, since
Angular does not use a JavaScript eval() to evaluate expressions. You can think of Angular expressions as JavaScript

expressions with following differences:

Attribute Evaluation: evaluation of all properties are against the scope, doing the evaluation, unlike in JavaScript
where the expressions are evaluated against the global window.

Forgiving: expression evaluation is forgiving to undefined and null, unlike in JavaScript, where such evaluations
generate NullPointerExceptions.

No Control Flow Statements: you cannot do any of the following in angular expression: conditionals, loops, or throw.

Filters: you can pass result of expression evaluations through filter chains. For example to convert date object into a
local specific human-readable format.

If, on the other hand, you do want to run arbitrary JavaScript code, you should make it a controller method and call the
method. If you want to eval() an angular expression from JavaScript, use the $eval() method.

Example

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 </head></head>5.

 <body><body>6.

 1+2={{1+2}} 1+2={{1+2}}7.

 </body></body>8.

</html></html>9.

End to end test :

itit(('should calculate expression in binding''should calculate expression in binding',, functionfunction()() {{1.

 expect expect((bindingbinding(('1+2''1+2')).)).toEqualtoEqual(('3''3'););2.

});});3.

index.html script.js End to end test

Demo

You can try evaluating different expressions here:

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="Cntl2""Cntl2" classclass=="expressions""expressions">>8.

 Expression: Expression:9.

 <input<input typetype=='text''text' ng-modelng-model=="expr""expr" sizesize=="80""80"/>/>10.

 <button<button ng-clickng-click=="addExp(expr)""addExp(expr)">>EvaluateEvaluate</button></button>11.

 12.

 <li<li ng-repeatng-repeat=="expr in exprs""expr in exprs">>13.

 [[<a>XX]]14.

 <tt><tt>{{expr}}{{expr}}</tt></tt> => => <span>15.

 16.

 17.

 </div></div>18.

 </body></body>19.

</html></html>20.

script.js :

functionfunction Cntl2Cntl2(($scope$scope)) {{1.

 varvar exprs exprs == $scope $scope..exprs exprs == [];[];2.

 $scope $scope..expr expr == '3*10|currency''3*10|currency';;3.

 $scope $scope..addExp addExp == functionfunction((exprexpr)) {{4.

 exprs exprs..pushpush((exprexpr););5.

 };};6.

 7.

 $scope $scope..removeExp removeExp == functionfunction((indexindex)) {{8.

 exprs exprs..splicesplice((indexindex,, 11););9.

 };};10.

}}11.

End to end test :

itit(('should allow user expression testing''should allow user expression testing',, functionfunction()() {{1.

 element element(('.expressions :button''.expressions :button').).clickclick();();2.

index.html script.js End to end test

 varvar li li == usingusing(('.expressions ul''.expressions ul').).repeaterrepeater(('li''li'););3.

 expect expect((lili..countcount()).()).toBetoBe((11););4.

 expect expect((lili..rowrow((00)).)).toEqualtoEqual([(["3*10|currency""3*10|currency",, "$30.00""$30.00"]);]);5.

});});6.

Demo

Evaluation of all properties takes place against a scope. Unlike JavaScript, where names default to global window
properties, Angular expressions have to use $window to refer to the global window object. For example, if you want to

call alert(), which is defined on window, in an expression you must use $window.alert(). This is done intentionally

to prevent accidental access to the global state (a common source of subtle bugs).

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div classclass=="example2""example2" ng-controllerng-controller=="Cntl1""Cntl1">>8.

 Name: Name: <input<input ng-modelng-model=="name""name" typetype=="text""text"/>/>9.

 <button<button ng-clickng-click=="greet()""greet()">>GreetGreet</button></button>10.

 </div></div>11.

 </body></body>12.

</html></html>13.

script.js :

functionfunction Cntl1Cntl1(($window$window,, $scope $scope){){1.

 $scope $scope..name name == 'World''World';;2.

 3.

 $scope $scope..greet greet == functionfunction()() {{4.

 (($window$window..mockWindow mockWindow |||| $window $window).).alertalert(('Hello ''Hello ' ++ $scope $scope..namename););5.

 }}6.

}}7.

End to end test :

itit(('should calculate expression in binding''should calculate expression in binding',, functionfunction()() {{1.

 varvar alertText alertText;;2.

 thisthis..addFutureActionaddFutureAction(('set mock''set mock',, functionfunction(($window$window,, $document $document,, donedone)) {{3.

 $window $window..mockWindow mockWindow == {{4.

 alert alert:: functionfunction((texttext){){ alertText alertText == text text;; }}5.

 };};6.

 donedone();();7.

 });});8.

 element element((':button:contains(Greet)'':button:contains(Greet)').).clickclick();();9.

 expect expect((thisthis..addFutureaddFuture(('alert text''alert text',, functionfunction((donedone)) {{10.

 donedone((nullnull,, alertText alertText););11.

 })).})).toBetoBe(('Hello World''Hello World'););12.

});});13.

Demo

Forgiving
Expression evaluation is forgiving to undefined and null. In JavaScript, evaluating a.b.c throws an exception if a is not an

object. While this makes sense for a general purpose language, the expression evaluations are primarily used for data
binding, which often look like this:

It makes more sense to show nothing than to throw an exception if a is undefined (perhaps we are waiting for the server

response, and it will become defined soon). If expression evaluation wasn't forgiving we'd have to write bindings that clutter
the code, for example: {{((a||{}).b||{}).c}}

Similarly, invoking a function a.b.c() on undefined or null simply returns undefined.

No Control Flow Statements
You cannot write a control flow statement in an expression. The reason behind this is core to the Angular philosophy that
application logic should be in controllers, not in the view. If you need a conditional, loop, or to throw from a view expression,
delegate to a JavaScript method instead.

Filters
When presenting data to the user, you might need to convert the data from its raw format to a user-friendly format. For
example, you might have a data object that needs to be formatted according to the locale before displaying it to the user.
You can pass expressions through a chain of filters like this:

The expression evaluator simply passes the value of name to uppercase filter.

Chain filters using this syntax:

You can also pass colon-delimited arguments to filters, for example, to display the number 123 with 2 decimal points:

You might be wondering, what is the significance of the $ prefix? It is simply a prefix that angular uses, to differentiate its
API names from others. If angular didn't use $, then evaluating a.length() would return undefined because neither a nor

angular define such a property.

Consider that in a future version of Angular we might choose to add a length method, in which case the behavior of the
expression would change. Worse yet, you the developer could create a length property and then we would have a collision.
This problem exists because Angular augments existing objects with additional behavior. By prefixing its additions with $ we
are reserving our namespace so that angular developers and developers who use Angular can develop in harmony without
collisions.

index.html script.js

Developer GuideDeveloper Guide // formsforms

Controls (input, select, textarea) are a way for user to enter data. Form is a collection of controls for the purpose of

grouping related controls together.

Form and controls provide validation services, so that the user can be notified of invalid input. This provides a better user
experience, because the user gets instant feedback on how to correct the error. Keep in mind that while client-side
validation plays an important role in providing good user experience, it can easily be circumvented and thus can not be
trusted. Server-side validation is still necessary for a secure application.

The key directive in understanding two-way data-binding is ngModel. The ngModel directive provides the two-way

data-binding by synchronizing the model to the view, as well as view to the model. In addition it provides an API for other

directives to augment its behavior.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="Controller""Controller">>8.

 <form<form novalidatenovalidate classclass=="simple-form""simple-form">>9.

 Name: Name: <input<input typetype=="text""text" ng-modelng-model=="user.name""user.name" />

/>10.

 E-mail: E-mail: <input<input typetype=="email""email" ng-modelng-model=="user.email""user.email" />

/>11.

 Gender: Gender: <input<input typetype=="radio""radio" ng-modelng-model=="user.gender""user.gender" valuevalue=="male""male" />/>malemale12.

 <input<input typetype=="radio""radio" ng-modelng-model=="user.gender""user.gender" valuevalue=="female""female" />/>femalefemale<br
/>13.

 <button<button ng-clickng-click=="reset()""reset()">>RESETRESET</button></button>14.

 <button<button ng-clickng-click=="update(user)""update(user)">>SAVESAVE</button></button>15.

 </form></form>16.

 <pre><pre>form = {{user | json}}form = {{user | json}}</pre></pre>17.

 <pre><pre>master = {{master | json}}master = {{master | json}}</pre></pre>18.

 </div></div>19.

 </body></body>20.

</html></html>21.

script.js :

functionfunction ControllerController(($scope$scope)) {{1.

 $scope $scope..mastermaster== {};{};2.

 3.

 $scope $scope..update update == functionfunction((useruser)) {{4.

 $scope $scope..mastermaster== angular angular..copycopy((useruser););5.

 };};6.

index.html script.js

 7.

 $scope $scope..reset reset == functionfunction()() {{8.

 $scope $scope..user user == angular angular..copycopy(($scope$scope..mastermaster););9.

 };};10.

 11.

 $scope $scope..resetreset();();12.

}}13.

Demo

Note that novalidate is used to disable browser's native form validation.

To allow styling of form as well as controls, ngModel add these CSS classes:

ng-valid

ng-invalid

ng-pristine

ng-dirty

The following example uses the CSS to display validity of each form control. In the example both user.name and

user.email are required, but are rendered with red background only when they are dirty. This ensures that the user is

not distracted with an error until after interacting with the control, and failing to satisfy its validity.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="Controller""Controller">>8.

 <form<form novalidatenovalidate classclass=="css-form""css-form">>9.

 Name: Name:10.

 <input<input typetype=="text""text" ng-modelng-model=="user.name""user.name" requiredrequired />

/>11.

 E-mail: E-mail: <input<input typetype=="email""email" ng-modelng-model=="user.email""user.email" requiredrequired />

/>12.

 Gender: Gender: <input<input typetype=="radio""radio" ng-modelng-model=="user.gender""user.gender" valuevalue=="male""male" />/>malemale13.

 <input<input typetype=="radio""radio" ng-modelng-model=="user.gender""user.gender" valuevalue=="female""female" />/>femalefemale<br
/>14.

 <button<button ng-clickng-click=="reset()""reset()">>RESETRESET</button></button>15.

 <button<button ng-clickng-click=="update(user)""update(user)">>SAVESAVE</button></button>16.

 </form></form>17.

 </div></div>18.

 19.

 <style<style typetype=="text/css""text/css">>20.

 ..csscss--form inputform input..ngng--invalidinvalid..ngng--dirty dirty {{21.

 background background--colorcolor:: #FA787E;#FA787E;22.

 }}23.

 24.

 ..csscss--form inputform input..ngng--validvalid..ngng--dirty dirty {{25.

 background background--colorcolor:: #78FA89;#78FA89;26.

 }}27.

 </style></style>28.

 </body></body>29.

</html></html>30.

script.js :

functionfunction ControllerController(($scope$scope)) {{1.

 $scope $scope..mastermaster== {};{};2.

 3.

 $scope $scope..update update == functionfunction((useruser)) {{4.

 $scope $scope..mastermaster== angular angular..copycopy((useruser););5.

 };};6.

 7.

 $scope $scope..reset reset == functionfunction()() {{8.

 $scope $scope..user user == angular angular..copycopy(($scope$scope..mastermaster););9.

 };};10.

 11.

 $scope $scope..resetreset();();12.

}}13.

Demo

index.html script.js

A form is in instance of FormController. The form instance can optionally be published into the scope using the name

attribute. Similarly control is an instance of NgModelController. The control instance can similarly be published into the

form instance using the name attribute. This implies that the internal state of both the form and the control is available for

binding in the view using the standard binding primitives.

This allows us to extend the above example with these features:

RESET button is enabled only if form has some changes
SAVE button is enabled only if form has some changes and is valid
custom error messages for user.email and user.agree

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="Controller""Controller">>8.

 <form<form namename=="form""form" classclass=="css-form""css-form" novalidatenovalidate>>9.

 Name: Name:10.

 <input<input typetype=="text""text" ng-modelng-model=="user.name""user.name" namename=="uName""uName" requiredrequired />

/>11.

 E-mail: E-mail:12.

 <input<input typetype=="email""email" ng-modelng-model=="user.email""user.email" namename=="uEmail""uEmail" requiredrequired/>

/>13.

 <div<div ng-showng-show=="form.uEmail.$dirty && form.uEmail.$invalid""form.uEmail.$dirty && form.uEmail.$invalid">>Invalid:Invalid:14.

 <span>Tell us your email.Tell us your email.15.

 <span>This is not a valid email.This is not a valid email.16.

 </div></div>17.

 18.

 Gender: Gender: <input<input typetype=="radio""radio" ng-modelng-model=="user.gender""user.gender" valuevalue=="male""male" />/>malemale19.

 <input<input typetype=="radio""radio" ng-modelng-model=="user.gender""user.gender" valuevalue=="female""female" />/>femalefemale<br
/>20.

 21.

 <input<input typetype=="checkbox""checkbox" ng-modelng-model=="user.agree""user.agree" namename=="userAgree""userAgree" requiredrequired />/>22.

 I agree: I agree: <input<input ng-showng-show=="user.agree""user.agree" typetype=="text""text" ng-modelng-model=="user.agreeSign""user.agreeSign"23.

 requiredrequired />

/>24.

 <div<div ng-showng-show=="!user.agree || !user.agreeSign""!user.agree || !user.agreeSign">>Please agree and sign.Please agree and sign.</div></div>25.

 26.

 <button<button ng-clickng-click=="reset()""reset()" ng-disabledng-disabled=="isUnchanged(user)""isUnchanged(user)">>RESETRESET</button></button>27.

 <button<button ng-clickng-click=="update(user)""update(user)"28.

 ng-disabledng-disabled=="form.$invalid || isUnchanged(user)""form.$invalid || isUnchanged(user)">>SAVESAVE</button></button>29.

 </form></form>30.

 </div></div>31.

 </body></body>32.

</html></html>33.

script.js :

functionfunction ControllerController(($scope$scope)) {{1.

 $scope $scope..mastermaster== {};{};2.

 3.

 $scope $scope..update update == functionfunction((useruser)) {{4.

 $scope $scope..mastermaster== angular angular..copycopy((useruser););5.

 };};6.

 7.

 $scope $scope..reset reset == functionfunction()() {{8.

 $scope $scope..user user == angular angular..copycopy(($scope$scope..mastermaster););9.

 };};10.

 11.

 $scope $scope..isUnchanged isUnchanged == functionfunction((useruser)) {{12.

 returnreturn angular angular..equalsequals((useruser,, $scope $scope..mastermaster););13.

 };};14.

 15.

 $scope $scope..resetreset();();16.

}}17.

Demo

Angular provides basic implementation for most common html5 input types: (text, number, url, email, radio,

checkbox), as well as some directives for validation (required, pattern, minlength, maxlength, min, max).

Defining your own validator can be done by defining your own directive which adds a custom validation function to the
ngModel controller. To get a hold of the controller the directive specifies a dependency as shown in the example

index.html script.js

below. The validation can occur in two places:

Model to View update - Whenever the bound model changes, all functions in NgModelController#$formatters

array are pipe-lined, so that each of these functions has an opportunity to format the value and change validity state of
the form control through NgModelController#$setValidity.

View to Model update - In a similar way, whenever a user interacts with a control it calls
NgModelController#$setViewValue. This in turn pipelines all functions in the NgModelController#$parsers

array, so that each of these functions has an opportunity to convert the value and change validity state of the form
control through NgModelController#$setValidity.

In the following example we create two directives.

The first one is integer and it validates whether the input is a valid integer. For example 1.23 is an invalid value,

since it contains a fraction. Note that we unshift the array instead of pushing. This is because we want to be first
parser and consume the control string value, as we need to execute the validation function before a conversion to
number occurs.

The second directive is a smart-float. It parses both 1.2 and 1,2 into a valid float number 1.2. Note that we can't

use input type number here as HTML5 browsers would not allow the user to type what it would consider an invalid

number such as 1,2.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="form-example1""form-example1">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="Controller""Controller">>8.

 <form<form namename=="form""form" classclass=="css-form""css-form" novalidatenovalidate>>9.

 <div><div>10.

 Size (integer 0 - 10): Size (integer 0 - 10):11.

 <input<input typetype=="number""number" ng-modelng-model=="size""size" namename=="size""size"12.

 minmin=="0""0" maxmax=="10""10" integerinteger />/>{{size}}{{size}}<br
/>13.

 <span>This is not valid integer!This is not valid integer!14.

 <span>15.

 The value must be in range 0 to 10! The value must be in range 0 to 10!16.

 </div></div>17.

 18.

 <div><div>19.

 Length (float): Length (float):20.

 <input<input typetype=="text""text" ng-modelng-model=="length""length" namename=="length""length" smart-floatsmart-float />/>21.

 {{length}} {{length}}<br
/>22.

 <span>23.

 This is not a valid float number! This is not a valid float number!24.

 </div></div>25.

 </form></form>26.

 </div></div>27.

 </body></body>28.

</html></html>29.

script.js :

varvar app app == angular angular..modulemodule(('form-example1''form-example1',, []);[]);1.

 2.

varvar INTEGER_REGEXP INTEGER_REGEXP == /^\-?\d*$//^\-?\d*$/;;3.

appapp..directivedirective(('integer''integer',, functionfunction()() {{4.

 returnreturn {{5.

 requirerequire:: 'ngModel''ngModel',,6.

 link link:: functionfunction((scopescope,, elm elm,, attrs attrs,, ctrl ctrl)) {{7.

 ctrl ctrl..$parsers$parsers..unshiftunshift((functionfunction((viewValueviewValue)) {{8.

 ifif ((INTEGER_REGEXPINTEGER_REGEXP..testtest((viewValueviewValue)))) {{9.

 // it is valid// it is valid10.

 ctrl ctrl..$setValidity$setValidity(('integer''integer',, truetrue););11.

 returnreturn viewValue viewValue;;12.

 }} elseelse {{13.

 // it is invalid, return undefined (no model update)// it is invalid, return undefined (no model update)14.

 ctrl ctrl..$setValidity$setValidity(('integer''integer',, falsefalse););15.

 returnreturn undefinedundefined;;16.

 }}17.

 });});18.

 }}19.

 };};20.

});});21.

 22.

varvar FLOAT_REGEXP FLOAT_REGEXP == /^\-?\d+((\.|\,)\d+)?$//^\-?\d+((\.|\,)\d+)?$/;;23.

appapp..directivedirective(('smartFloat''smartFloat',, functionfunction()() {{24.

 returnreturn {{25.

 requirerequire:: 'ngModel''ngModel',,26.

 link link:: functionfunction((scopescope,, elm elm,, attrs attrs,, ctrl ctrl)) {{27.

 ctrl ctrl..$parsers$parsers..unshiftunshift((functionfunction((viewValueviewValue)) {{28.

 ifif ((FLOAT_REGEXPFLOAT_REGEXP..testtest((viewValueviewValue)))) {{29.

 ctrl ctrl..$setValidity$setValidity(('float''float',, truetrue););30.

 returnreturn parseFloat parseFloat((viewValueviewValue..replacereplace((','',',, '.''.'));));31.

 }} elseelse {{32.

 ctrl ctrl..$setValidity$setValidity(('float''float',, falsefalse););33.

 returnreturn undefinedundefined;;34.

 }}35.

 });});36.

 }}37.

 };};38.

});});39.

Demo

index.html script.js

Angular implements all of the basic HTML form controls (input, select, textarea), which should be sufficient for most

cases. However, if you need more flexibility, you can write your own form control as a directive.

In order for custom control to work with ngModel and to achieve two-way data-binding it needs to:

implement render method, which is responsible for rendering the data after it passed the

NgModelController#$formatters,

call $setViewValue method, whenever the user interacts with the control and model needs to be updated. This is

usually done inside a DOM Event listener.

See $compileProvider.directive for more info.

The following example shows how to add two-way data-binding to contentEditable elements.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="form-example2""form-example2">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div contentEditablecontentEditable=="true""true" ng-modelng-model=="content""content" titletitle=="Click to edit""Click to edit">>SomeSome</div></div>8.

 <pre><pre>model = {{content}}model = {{content}}</pre></pre>9.

 10.

 <style<style typetype=="text/css""text/css">>11.

 div div[[contentEditablecontentEditable]] {{12.

 cursor cursor:: pointer pointer;;13.

 background background--colorcolor:: #D0D0D0;#D0D0D0;14.

 }}15.

 </style></style>16.

 </body></body>17.

</html></html>18.

script.js :

angularangular..modulemodule(('form-example2''form-example2',, []).[]).directivedirective(('contenteditable''contenteditable',, functionfunction()() {{1.

 returnreturn {{2.

 requirerequire:: 'ngModel''ngModel',,3.

 link link:: functionfunction((scopescope,, elm elm,, attrs attrs,, ctrl ctrl)) {{4.

 // view -> model// view -> model5.

 elm elm..bindbind(('blur''blur',, functionfunction()() {{6.

 scope scope..$apply$apply((functionfunction()() {{7.

 ctrl ctrl..$setViewValue$setViewValue((elmelm..htmlhtml());());8.

 });});9.

 });});10.

 11.

 // model -> view// model -> view12.

 ctrl ctrl..$render $render == functionfunction()() {{13.

 elm elm..htmlhtml((ctrlctrl..$viewValue$viewValue););14.

 };};15.

 16.

 // load init value from DOM// load init value from DOM17.

 ctrl ctrl..$setViewValue$setViewValue((elmelm..htmlhtml());());18.

 }}19.

 };};20.

});});21.

Demo

Developer GuideDeveloper Guide // i18ni18n

What is i18n and l10n?

Internationalization, abbreviated i18n, is the process of developing products in such a way that they can be localized for
languages and cultures easily. Localization, abbreviated l10n, is the process of adapting applications and text to enable
their usability in a particular cultural or linguistic market. For application developers, internationalizing an application means
abstracting all of the strings and other locale-specific bits (such as date or currency formats) out of the application.
Localizing an application means providing translations and localized formats for the abstracted bits.

What level of support for i18n/l10n is currently in Angular?

Currently, Angular supports i18n/l10n for datetime, number and currency filters.

Additionally, Angular supports localizable pluralization support provided by the ngPluralize directive.

All localizable Angular components depend on locale-specific rule sets managed by the $locale service.

For readers who want to jump straight into examples, we have a few web pages that showcase how to use Angular filters
with various locale rule sets. You can find these examples either on Github or in the i18n/e2e folder of Angular development
package.

What is a locale id?

A locale is a specific geographical, political, or cultural region. The most commonly used locale ID consists of two parts:
language code and country code. For example, en-US, en-AU, zh-CN are all valid locale IDs that have both language codes
and country codes. Because specifying a country code in locale ID is optional, locale IDs such as en, zh, and sk are also
valid. See the ICU website for more information about using locale IDs.

Supported locales in Angular Angular separates number and datetime format rule sets into different files, each file for a
particular locale. You can find a list of currently supported locales here

There are two approaches to providing locale rules to Angular:

1. Pre-bundled rule sets

You can pre-bundle the desired locale file with Angular by concatenating the content of the locale-specific file to the end of
angular.js or angular.min.js file.

For example on *nix, to create a an angular.js file that contains localization rules for german locale, you can do the
following:

cat angular.js i18n/angular-locale_de-ge.js > angular_de-ge.js

When the application containing angular_de-ge.js script instead of the generic angular.js script starts, Angular is

automatically pre-configured with localization rules for the german locale.

2. Including locale js script in index.html page

You can also include the locale specific js file in the index.html page. For example, if one client requires German locale, you
would serve index_de-ge.html which will look something like this:

<html<html ng-appng-app>>1.

 <head><head>2.

….….3.

 <script<script srcsrc=="angular.js""angular.js"></script>></script>4.

 <script<script srcsrc=="i18n/angular-locale_de-ge.js""i18n/angular-locale_de-ge.js"></script>></script>5.

….….6.

 </head></head>7.

</html></html>8.

Comparison of the two approaches Both approaches described above requires you to prepare different index.html
pages or js files for each locale that your app may be localized into. You also need to configure your server to serve the
correct file that correspond to the desired locale.

However, the second approach (Including locale js script in index.html page) is likely to be slower because an extra script
needs to be loaded.

Currency symbol "gotcha"

Angular's currency filter allows you to use the default currency symbol from the locale service, or you can provide the

filter with a custom currency symbol. If your app will be used only in one locale, it is fine to rely on the default currency
symbol. However, if you anticipate that viewers in other locales might use your app, you should provide your own currency
symbol to make sure the actual value is understood.

For example, if you want to display account balance of 1000 dollars with the following binding containing currency filter: {{

1000 | currency }}, and your app is currently in en-US locale. '$1000.00' will be shown. However, if someone in a

different local (say, Japan) views your app, her browser will specify the locale as ja, and the balance of '¥1000.00' will be
shown instead. This will really upset your client.

In this case, you need to override the default currency symbol by providing the currency filter with a currency symbol as a
parameter when you configure the filter, for example, USD$1,000.00. This way, Angular will always show a balance of
'USD$1000' and disregard any locale changes.

Translation length "gotcha"

Keep in mind that translated strings/datetime formats can vary greatly in length. For example, June 3, 1977 will be

translated to Spanish as 3 de junio de 1977. There are bound to be other more extreme cases. Hence, when

internationalizing your apps, you need to apply CSS rules accordingly and do thorough testing to make sure UI components
do not overlap.

Timezones

Keep in mind that Angular datetime filter uses the time zone settings of the browser. So the same application will show
different time information depending on the time zone settings of the computer that the application is running on. Neither
Javascript nor Angular currently supports displaying the date with a timezone specified by the developer.

Developer GuideDeveloper Guide // ieie

This document describes the Internet Explorer (IE) idiosyncrasies when dealing with custom HTML attributes and tags.
Read this document if you are planning on deploying your Angular application on IE v8.0 or earlier.

To make your Angular application work on IE please make sure that:

You polyfill JSON.stringify if necessary (IE7 will need this). You can use JSON2 or JSON3 polyfills for this.1.

you do not use custom element tags such as <ng:view> (use the attribute version <div ng-view> instead), or2.

if you do use custom element tags, then you must take these steps to make IE happy:3.

<html<html xmlns:ngxmlns:ng=="http://angularjs.org""http://angularjs.org">>1.

 <head><head>2.

 <!--[if lte IE 8]><!--[if lte IE 8]>3.

 <script> <script>4.

 document.createElement('ng-include'); document.createElement('ng-include');5.

 document.createElement('ng-pluralize'); document.createElement('ng-pluralize');6.

 document.createElement('ng-view'); document.createElement('ng-view');7.

 8.

 // Optionally these for CSS // Optionally these for CSS9.

 document.createElement('ng:include'); document.createElement('ng:include');10.

 document.createElement('ng:pluralize'); document.createElement('ng:pluralize');11.

 document.createElement('ng:view'); document.createElement('ng:view');12.

 </script> </script>13.

 <![endif]--> <![endif]-->14.

 </head></head>15.

 <body><body>16.

 17.

 </body></body>18.

</html></html>19.

The important parts are:

xmlns:ng - namespace - you need one namespace for each custom tag you are planning on using.

document.createElement(yourTagName) - creation of custom tag names - Since this is an issue only for older

version of IE you need to load it conditionally. For each tag which does not have namespace and which is not defined in
HTML you need to pre-declare it to make IE happy.

IE has issues with element tag names which are not standard HTML tag names. These fall into two categories, and each
category has its own fix.

If the tag name starts with my: prefix than it is considered an XML namespace and must have corresponding

namespace declaration on <html xmlns:my="ignored">

If the tag has no : but it is not a standard HTML tag, then it must be pre-created using

document.createElement('my-tag')

If you are planning on styling the custom tag with CSS selectors, then it must be pre-created using
document.createElement('my-tag') regardless of XML namespace.

The Good News
The good news is that these restrictions only apply to element tag names, and not to element attribute names. So this
requires no special handling in IE: <div my-tag your:tag> </div>.

What happens if I fail to do this?
Suppose you have HTML with unknown tag mytag (this could also be my:tag or my-tag with same result):

<html><html>1.

 <body><body>2.

 <mytag><mytag>some textsome text</mytag></mytag>3.

 </body></body>4.

</html></html>5.

It should parse into the following DOM:

#document#document1.

 +-+- HTML HTML2.

 +-+- BODY BODY3.

 +-+- mytag mytag4.

 +-+- #text: some text#text: some text5.

The expected behavior is that the BODY element has a child element mytag, which in turn has the text some text.

But this is not what IE does (if the above fixes are not included):

#document#document1.

 +-+- HTML HTML2.

 +-+- BODY BODY3.

 +-+- mytag mytag4.

 +-+- #text: some text#text: some text5.

 +-+- //mytagmytag6.

In IE, the behavior is that the BODY element has three children:

A self closing mytag. Example of self closing tag is
. The trailing / is optional, but the
 tag is not allowed

to have any children, and browsers consider
some text</br> as three siblings not a
 with some text as

child.

1.

A text node with some text. This should have been a child of mytag above, not a sibling.2.

A corrupt self closing /mytag. This is corrupt since element names are not allowed to have the / character.

Furthermore this closing element should not be part of the DOM since it is only used to delineate the structure of the
DOM.

3.

CSS Styling of Custom Tag Names
To make CSS selectors work with custom elements, the custom element name must be pre-created with
document.createElement('my-tag') regardless of XML namespace.

<html<html xmlns:ngxmlns:ng=="needed for ng: namespace""needed for ng: namespace">>1.

 <head><head>2.

 <!--[if lte IE 8]><!--[if lte IE 8]>3.

 <script> <script>4.

 // needed to make ng-include parse properly // needed to make ng-include parse properly5.

 document.createElement('ng-include'); document.createElement('ng-include');6.

 7.

 // needed to enable CSS reference // needed to enable CSS reference8.

 document.createElement('ng:view'); document.createElement('ng:view');9.

 </script> </script>10.

 <![endif]--> <![endif]-->11.

 <style><style>12.

 ng\\ ng\\::view view {{13.

 display display:: block block;;14.

 border border:: 1px1px solid red solid red;;15.

 }}16.

 17.

 ng ng--include include {{18.

 display display:: block block;;19.

 border border:: 1px1px solid blue solid blue;;20.

 }}21.

 </style></style>22.

 </head></head>23.

 <body><body>24.

 <ng:view></ng:view><ng:view></ng:view>25.

 <ng-include></ng-include><ng-include></ng-include>26.

 27.

 </body></body>28.

</html></html>29.

Developer GuideDeveloper Guide // introductionintroduction

Angular is pure client-side technology, written entirely in JavaScript. It works with the long-established technologies of the
web (HTML, CSS, and JavaScript) to make the development of web apps easier and faster than ever before.

One important way that Angular simplifies web development is by increasing the level of abstraction between the developer
and most low-level web app development tasks. Angular automatically takes care of many of these tasks, including:

DOM Manipulation
Setting Up Listeners and Notifiers
Input Validation

Because Angular handles much of the work involved in these tasks, developers can concentrate more on application logic
and less on repetitive, error-prone, lower-level coding.

At the same time that Angular simplifies the development of web apps, it brings relatively sophisticated techniques to the
client-side, including:

Separation of data, application logic, and presentation components
Data Binding between data and presentation components
Services (common web app operations, implemented as substitutable objects)
Dependency Injection (used primarily for wiring together services)
An extensible HTML compiler (written entirely in JavaScript)
Ease of Testing

These techniques have been for the most part absent from the client-side for far too long.

Single-page / Round-trip Applications
You can use Angular to develop both single-page and round-trip apps, but Angular is designed primarily for developing
single-page apps. Angular supports browser history, forward and back buttons, and bookmarking in single-page apps.

You normally wouldn't want to load Angular with every page change, as would be the case with using Angular in a round-trip
app. However, it would make sense to do so if you were adding a subset of Angular's features (for example, templates to
leverage angular's data-binding feature) to an existing round-trip app. You might follow this course of action if you were
migrating an older app to a single-page Angular app.

index.html script.js

Developer GuideDeveloper Guide // modulemodule

Most applications have a main method which instantiates, wires, and bootstraps the application. Angular apps don't have a
main method. Instead modules declaratively specify how an application should be bootstrapped. There are several
advantages to this approach:

The process is more declarative which is easier to understand
In unit-testing there is no need to load all modules, which may aid in writing unit-tests.
Additional modules can be loaded in scenario tests, which can override some of the configuration and help end-to-end
test the application
Third party code can be packaged as reusable modules.
The modules can be loaded in any/parallel order (due to delayed nature of module execution).

Ok, I'm in a hurry. How do I get a Hello World module working?

Important things to notice:

Module API

Notice the reference to the myApp module in the <html ng-app="myApp">, it is what bootstraps the app using your

module.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="myApp""myApp">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div><div>8.

 {{ 'World' | greet }} {{ 'World' | greet }}9.

 </div></div>10.

 </body></body>11.

</html></html>12.

script.js :

// declare a module// declare a module1.

varvar myAppModule myAppModule == angular angular..modulemodule(('myApp''myApp',, []);[]);2.

 3.

// configure the module.// configure the module.4.

// in this example we will create a greeting filter// in this example we will create a greeting filter5.

myAppModulemyAppModule..filterfilter(('greet''greet',, functionfunction()() {{6.

 returnreturn functionfunction((namename)) {{7.

index.html script.js

 returnreturn 'Hello, ''Hello, ' ++ name name ++ '!''!';;8.

 };};9.

});});10.

Demo

While the example above is simple, it will not scale to large applications. Instead we recommend that you break your
application to multiple modules like this:

A service module, for service declaration
A directive module, for directive declaration
A filter module, for filter declaration
And an application level module which depends on the above modules, and which has initialization code.

The reason for this breakup is that in your tests, it is often necessary to ignore the initialization code, which tends to be
difficult to test. By putting it into a separate module it can be easily ignored in tests. The tests can also be more focused by
only loading the modules that are relevant to tests.

The above is only a suggestion, so feel free to tailor it to your needs.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="xmpl""xmpl">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="XmplController""XmplController">>8.

 {{ greeting }}! {{ greeting }}!9.

 </div></div>10.

 </body></body>11.

</html></html>12.

script.js :

angularangular..modulemodule(('xmpl.service''xmpl.service',, []).[]).1.

 value value(('greeter''greeter',, {{2.

 salutation salutation:: 'Hello''Hello',,3.

 localize localize:: functionfunction((localizationlocalization)) {{4.

 thisthis..salutation salutation == localization localization..salutationsalutation;;5.

 },},6.

 greet greet:: functionfunction((namename)) {{7.

 returnreturn thisthis..salutation salutation ++ ' '' ' ++ name name ++ '!''!';;8.

 }}9.

 }).}).10.

 value value(('user''user',, {{11.

 load load:: functionfunction((namename)) {{12.

 thisthis..name name == name name;;13.

 }}14.

 });});15.

 16.

angularangular..modulemodule(('xmpl.directive''xmpl.directive',, []);[]);17.

 18.

angularangular..modulemodule(('xmpl.filter''xmpl.filter',, []);[]);19.

 20.

angularangular..modulemodule(('xmpl''xmpl',, [['xmpl.service''xmpl.service',, 'xmpl.directive''xmpl.directive',, 'xmpl.filter''xmpl.filter']).]).21.

 run run((functionfunction((greetergreeter,, user user)) {{22.

 // This is effectively part of the main method initialization code// This is effectively part of the main method initialization code23.

 greeter greeter..localizelocalize({({24.

 salutation salutation:: 'Bonjour''Bonjour'25.

 });});26.

 user user..loadload(('World''World'););27.

 })})28.

 29.

 30.

// A Controller for your app// A Controller for your app31.

varvar XmplControllerXmplController == functionfunction(($scope$scope,, greeter greeter,, user user)) {{32.

 $scope $scope..greeting greeting == greeter greeter..greetgreet((useruser..namename););33.

}}34.

Demo

A module is a collection of configuration and run blocks which get applied to the application during the bootstrap process. In
its simplest form the module consist of collection of two kinds of blocks:

Configuration blocks - get executed during the provider registrations and configuration phase. Only providers and
constants can be injected into configuration blocks. This is to prevent accidental instantiation of services before they
have been fully configured.

1.

Run blocks - get executed after the injector is created and are used to kickstart the application. Only instances and
constants can be injected into run blocks. This is to prevent further system configuration during application run time.

2.

angularangular..modulemodule(('myModule''myModule',, []).[]).1.

 config config((functionfunction((injectablesinjectables)) {{ // provider-injector// provider-injector2.

 // This is an example of config block.// This is an example of config block.3.

 // You can have as many of these as you want.// You can have as many of these as you want.4.

 // You can only inject Providers (not instances)// You can only inject Providers (not instances)5.

 // into the config blocks.// into the config blocks.6.

 }).}).7.

 run run((functionfunction((injectablesinjectables)) {{ // instance-injector// instance-injector8.

 // This is an example of a run block.// This is an example of a run block.9.

 // You can have as many of these as you want.// You can have as many of these as you want.10.

 // You can only inject instances (not Providers)// You can only inject instances (not Providers)11.

 // into the run blocks// into the run blocks12.

 });});13.

Configuration Blocks
There are some convenience methods on the module which are equivalent to the config block. For example:

angularangular..modulemodule(('myModule''myModule',, []).[]).1.

 value value(('a''a',, 123123).).2.

 factory factory(('a''a',, functionfunction()() {{ returnreturn 123123;; }).}).3.

 directive directive(('directiveName''directiveName',, ...)....).4.

 filter filter(('filterName''filterName',, ...);...);5.

 6.

// is same as// is same as7.

 8.

angularangular..modulemodule(('myModule''myModule',, []).[]).9.

 config config((functionfunction(($provide$provide,, $compileProvider $compileProvider,, $filterProvider $filterProvider)) {{10.

 $provide $provide..valuevalue(('a''a',, 123123))11.

 $provide $provide..factoryfactory(('a''a',, functionfunction()() {{ returnreturn 123123;; })})12.

 $compileProvider $compileProvider..directivedirective(('directiveName''directiveName',, ...)....).13.

 $filterProvider $filterProvider..registerregister(('filterName''filterName',, ...);...);14.

 });});15.

The configuration blocks get applied in the order in which they are registered. The only exception to it are constant
definitions, which are placed at the beginning of all configuration blocks.

Run Blocks
Run blocks are the closest thing in Angular to the main method. A run block is the code which needs to run to kickstart the
application. It is executed after all of the service have been configured and the injector has been created. Run blocks
typically contain code which is hard to unit-test, and for this reason should be declared in isolated modules, so that they can
be ignored in the unit-tests.

Dependencies
Modules can list other modules as their dependencies. Depending on a module implies that required module needs to be
loaded before the requiring module is loaded. In other words the configuration blocks of the required modules execute
before the configuration blocks or the requiring module. The same is true for the run blocks. Each module can only be
loaded once, even if multiple other modules require it.

Asynchronous Loading
Modules are a way of managing $injector configuration, and have nothing to do with loading of scripts into a VM. There are
existing projects which deal with script loading, which may be used with Angular. Because modules do nothing at load time
they can be loaded into the VM in any order and thus script loaders can take advantage of this property and parallelize the
loading process.

In its simplest form a unit test is a way of instantiating a subset of the application in test and then applying a stimulus to it. It
is important to realize that each module can only be loaded once per injector. Typically an app has only one injector. But in
tests, each test has its own injector, which means that the modules are loaded multiple times per VM. Properly structured
modules can help with unit testing, as in this example:

In all of these examples we are going to assume this module definition:

angularangular..modulemodule(('greetMod''greetMod',, []).[]).1.

 2.

 factory factory(('alert''alert',, functionfunction(($window$window)) {{3.

 returnreturn functionfunction((texttext)) {{4.

 $window $window..alertalert((texttext););5.

 }}6.

 }).}).7.

 8.

 value value(('salutation''salutation',, 'Hello''Hello').).9.

 10.

 factory factory(('greet''greet',, functionfunction((alertalert,, salutation salutation)) {{11.

 returnreturn functionfunction((namename)) {{12.

 alert alert((salutation salutation ++ ' '' ' ++ name name ++ '!''!'););13.

 }}14.

 });});15.

Let's write some tests:

describedescribe(('myApp''myApp',, functionfunction()() {{1.

 // load the relevant application modules then load a special// load the relevant application modules then load a special2.

 // test module which overrides the $window with a mock version,// test module which overrides the $window with a mock version,3.

 // so that calling window.alert() will not block the test// so that calling window.alert() will not block the test4.

 // runner with a real alert box. This is an example of overriding// runner with a real alert box. This is an example of overriding5.

 // configuration information in tests.// configuration information in tests.6.

 beforeEach beforeEach((modulemodule(('greetMod''greetMod',, functionfunction(($provide$provide)) {{7.

 $provide $provide..valuevalue(('$window''$window',, {{8.

 alert alert:: jasmine jasmine..createSpycreateSpy(('alert''alert'))9.

 });});10.

 }));}));11.

 12.

 // The inject() will create the injector and inject the greet and// The inject() will create the injector and inject the greet and13.

 // $window into the tests. The test need not concern itself with// $window into the tests. The test need not concern itself with14.

 // wiring of the application, only with testing it.// wiring of the application, only with testing it.15.

 it it(('should alert on $window''should alert on $window',, inject inject((functionfunction((greetgreet,, $window $window)) {{16.

 greet greet(('World''World'););17.

 expect expect(($window$window..alertalert).).toHaveBeenCalledWithtoHaveBeenCalledWith(('Hello World!''Hello World!'););18.

 }));}));19.

 20.

 // this is another way of overriding configuration in the// this is another way of overriding configuration in the21.

 // tests using an inline module and inject methods.// tests using an inline module and inject methods.22.

 it it(('should alert using the alert service''should alert using the alert service',, functionfunction()() {{23.

 varvar alertSpy alertSpy == jasmine jasmine..createSpycreateSpy(('alert''alert'););24.

 modulemodule((functionfunction(($provide$provide)) {{25.

 $provide $provide..valuevalue(('alert''alert',, alertSpy alertSpy););26.

 });});27.

 inject inject((functionfunction((greetgreet)) {{28.

 greet greet(('World''World'););29.

 expect expect((alertSpyalertSpy).).toHaveBeenCalledWithtoHaveBeenCalledWith(('Hello World!''Hello World!'););30.

 });});31.

 });});32.

});});33.

index.html script.js

Developer GuideDeveloper Guide // scopescope

scope is an object that refers to the application model. It is an execution context for expressions. Scopes are arranged in

hierarchical structure which mimic the DOM structure of the application. Scopes can watch expressions and propagate
events.

Scope characteristics
Scopes provide APIs ($watch) to observe model mutations.

Scopes provide APIs ($apply) to propagate any model changes through the system into the view from outside of the

"Angular realm" (controllers, services, Angular event handlers).

Scopes can be nested to isolate application components while providing access to shared model properties. A scope
(prototypically) inherits properties from its parent scope.

Scopes provide context against which expressions are evaluated. For example {{username}} expression is

meaningless, unless it is evaluated against a specific scope which defines the username property.

Scope as Data-Model
Scope is the glue between application controller and the view. During the template linking phase the directives set up

$watch expressions on the scope. The $watch allows the directives to be notified of property changes, which allows the

directive to render the updated value to the DOM.

Both controllers and directives have reference to the scope, but not to each other. This arrangement isolates the controller
from the directive as well as from DOM. This is an important point since it makes the controllers view agnostic, which
greatly improves the testing story of the applications.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="MyController""MyController">>8.

 Your name: Your name:9.

 <input<input typetype=="text""text" ng-modelng-model=="username""username">>10.

 <button<button ng-clickng-click=='sayHello()''sayHello()'>>greetgreet</button></button>11.

 <hr><hr>12.

 {{greeting}} {{greeting}}13.

 </div></div>14.

 </body></body>15.

</html></html>16.

script.js :

functionfunction MyControllerMyController(($scope$scope)) {{1.

 $scope $scope..username username == 'World''World';;2.

 3.

 $scope $scope..sayHello sayHello == functionfunction()() {{4.

 $scope $scope..greeting greeting == 'Hello ''Hello ' ++ $scope $scope..username username ++ '!''!';;5.

 };};6.

}}7.

Demo

In the above example notice that the MyController assigns World to the username property of the scope. The scope

then notifies the input of the assignment, which then renders the input with username pre-filled. This demonstrates how a

controller can write data into the scope.

Similarly the controller can assign behavior to scope as seen by the sayHello method, which is invoked when the user

clicks on the 'greet' button. The sayHello method can read the username property and create a greeting property.

This demonstrates that the properties on scope update automatically when they are bound to HTML input widgets.

Logically the rendering of {{greeting}} involves:

retrieval of the scope associated with DOM node where {{greeting}} is defined in template. In this example this is

the same scope as the scope which was passed into MyController. (We will discuss scope hierarchies later.)

Evaluate the greeting expression against the scope retrieved above, and assign the result to the text of the

enclosing DOM element.

You can think of the scope and its properties as the data which is used to render the view. The scope is the single source-
of-truth for all things view related.

From a testability point of view, the separation of the controller and the view is desirable, because it allows us to test the
behavior without being distracted by the rendering details.

itit(('should say hello''should say hello',, functionfunction()() {{1.

 varvar scopeMock scopeMock == {};{};2.

 varvar cntl cntl == newnew MyControllerMyController((scopeMockscopeMock););3.

 4.

 // Assert that username is pre-filled// Assert that username is pre-filled5.

 expect expect((scopeMockscopeMock..usernameusername).).toEqualtoEqual(('World''World'););6.

 7.

 // Assert that we read new username and greet// Assert that we read new username and greet8.

 scopeMock scopeMock..username username == 'angular''angular';;9.

 scopeMock scopeMock..sayHellosayHello();();10.

 expect expect((scopeMockscopeMock..greetinggreeting).).toEqualtoEqual(('Hello angular!''Hello angular!'););11.

});});12.

index.html style.css script.js

Scope Hierarchies
Each Angular application has exactly one root scope, but may have several child scopes.

The application can have multiple scopes, because some directives create new child scopes (refer to directive
documentation to see which directives create new scopes). When new scopes are created, they are added as children of
their parent scope. This creates a tree structure which parallels the DOM where they're attached

When Angular evaluates {{username}}, it first looks at the scope associated with the given element for the username

property. If no such property is found, it searches the parent scope and so on until the root scope is reached. In JavaScript
this behavior is known as prototypical inheritance, and child scopes prototypically inherit from their parents.

This example illustrates scopes in application, and prototypical inheritance of properties.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="EmployeeController""EmployeeController">>8.

 Manager: {{employee.name}} [{{department}}] Manager: {{employee.name}} [{{department}}]

9.

 Reports: Reports:10.

 11.

 <li<li ng-repeatng-repeat=="employee in employee.reports""employee in employee.reports">>12.

 {{employee.name}} [{{department}}] {{employee.name}} [{{department}}]13.

 14.

 15.

 <hr><hr>16.

 {{greeting}} {{greeting}}17.

 </div></div>18.

 </body></body>19.

</html></html>20.

style.css :

/* remove .doc-example-live in jsfiddle *//* remove .doc-example-live in jsfiddle */1.

..docdoc--exampleexample--live live ..ngng--scope scope {{2.

 border border:: 1px1px dashed red dashed red;;3.

}}4.

script.js :

functionfunction EmployeeControllerEmployeeController(($scope$scope)) {{1.

 $scope $scope..department department == 'Engineering''Engineering';;2.

 $scope $scope..employee employee == {{3.

 name name:: 'Joe the Manager''Joe the Manager',,4.

 reports reports:: [[5.

index.html script.js

 {{namename:: 'John Smith''John Smith'},},6.

 {{namename:: 'Mary Run''Mary Run'}}7.

]]8.

 };};9.

}}10.

Demo

Notice that Angular automatically places ng-scope class on elements where scopes are attached. The <style> definition

in this example highlights in red the new scope locations. The child scopes are necessary because the repeater evaluates
{{employee.name}} expression, but depending on which scope the expression is evaluated it produces different result.

Similarly the evaluation of {{department}} prototypically inherits from root scope, as it is the only place where the

department property is defined.

Retrieving Scopes from the DOM.
Scopes are attached to the DOM as $scope data property, and can be retrieved for debugging purposes. (It is unlikely

that one would need to retrieve scopes in this way inside the application.) The location where the root scope is attached to
the DOM is defined by the location of ng-app directive. Typically ng-app is placed an the <html> element, but it can be

placed on other elements as well, if, for example, only a portion of the view needs to be controlled by Angular.

To examine the scope in the debugger:

right click on the element of interest in your browser and select 'inspect element'. You should see the browser
debugger with the element you clicked on highlighted.

1.

The debugger allows you to access the currently selected element in the console as $0 variable.2.

To retrieve the associated scope in console execute: angular.element($0).scope()3.

Scope Events Propagation
Scopes can propagate events in similar fashion to DOM events. The event can be broadcasted to the scope children or

emitted to scope parents.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="EventController""EventController">>8.

 Root scope Root scope <tt><tt>MyEventMyEvent</tt></tt> count: {{count}} count: {{count}}9.

 10.

 <li<li ng-repeatng-repeat=="i in [1]""i in [1]" ng-controllerng-controller=="EventController""EventController">>11.

 <button<button ng-clickng-click=="$emit('MyEvent')""$emit('MyEvent')">>$emit('MyEvent')$emit('MyEvent')</button></button>12.

 <button<button ng-clickng-click=="$broadcast('MyEvent')""$broadcast('MyEvent')">>$broadcast('MyEvent')$broadcast('MyEvent')</button></button>13.

14.

 Middle scope Middle scope <tt><tt>MyEventMyEvent</tt></tt> count: {{count}} count: {{count}}15.

 16.

 <li<li ng-repeatng-repeat=="item in [1, 2]""item in [1, 2]" ng-controllerng-controller=="EventController""EventController">>17.

 Leaf scope Leaf scope <tt><tt>MyEventMyEvent</tt></tt> count: {{count}} count: {{count}}18.

 19.

 20.

 21.

 22.

 </div></div>23.

 </body></body>24.

</html></html>25.

script.js :

functionfunction EventControllerEventController(($scope$scope)) {{1.

 $scope $scope..count count == 00;;2.

 $scope $scope..$on$on(('MyEvent''MyEvent',, functionfunction()() {{3.

 $scope $scope..countcount++;++;4.

 });});5.

}}6.

Demo

Scope Life Cycle
The normal flow of a browser receiving an event is that it executes a corresponding JavaScript callback. Once the callback
completes the browser re-renders the DOM and returns to waiting for more events.

When the browser calls into JavaScript the code executes outside the Angular execution context, which means that Angular
is unaware of model modifications. To properly process model modifications the execution has to enter the Angular
execution context using the $apply method. Only model modifications which execute inside the $apply method will be

properly accounted for by Angular. For example if a directive listens on DOM events, such as ng-click it must evaluate

the expression inside the $apply method.

After evaluating the expression, the $apply method performs a $digest. In the $digest phase the scope examines all of

the $watch expressions and compares them with the previous value. This dirty checking is done asynchronously. This

means that assignment such as $scope.username="angular" will not immediately cause a $watch to be notified,

instead the $watch notification is delayed until the $digest phase. This delay is desirable, since it coalesces multiple

model updates into one $watch notification as well as it guarantees that during the $watch notification no other $watches

are running. If a $watch changes the value of the model, it will force additional $digest cycle.

Creation

The root scope is created during the application bootstrap by the $injector. During template linking, some

directives create new child scopes.

1.

Watcher registration

During template linking directives register watches on the scope. These watches will be used to propagate model

values to the DOM.

2.

Model mutation

For mutations to be properly observed, you should make them only within the scope.$apply(). (Angular APIs do

this implicitly, so no extra $apply call is needed when doing synchronous work in controllers, or asynchronous work

with $http or $timeout services.

3.

Mutation observation

At the end $apply, Angular performs a $digest cycle on the root scope, which then propagates throughout all child

scopes. During the $digest cycle, all $watched expressions or functions are checked for model mutation and if a

mutation is detected, the $watch listener is called.

4.

Scope destruction

When child scopes are no longer needed, it is the responsibility of the child scope creator to destroy them via
scope.$destroy() API. This will stop propagation of $digest calls into the child scope and allow for memory used

by the child scope models to be reclaimed by the garbage collector.

5.

Scopes and Directives
During the compilation phase, the compiler matches directives against the DOM template. The directives usually fall

into one of two categories:

Observing directives, such as double-curly expressions {{expression}}, register listeners using the $watch()

method. This type of directive needs to be notified whenever the expression changes so that it can update the view.

Listener directives, such as ng-click, register a listener with the DOM. When the DOM listener fires, the directive

executes the associated expression and updates the view using the $apply() method.

When an external event (such as a user action, timer or XHR) is received, the associated expression must be applied to the
scope through the $apply() method so that all listeners are updated correctly.

Directives that Create Scopes
In most cases, directives and scopes interact but do not create new instances of scope. However, some directives,

such as ng-controller and ng-repeat, create new child scopes and attach the child scope to the corresponding DOM

element. You can retrieve a scope for any DOM element by using an angular.element(aDomElement).scope()

method call.

Controllers and Scopes
Scopes and controllers interact with each other in the following situations:

Controllers use scopes to expose controller methods to templates (see ng-controller).

Controllers define methods (behavior) that can mutate the model (properties on the scope).

Controllers may register watches on the model. These watches execute immediately after the controller behavior

executes.

See the ng-controller for more information.

Scope $watch Performance Considerations
Dirty checking the scope for property changes is a common operation in Angular and for this reason the dirty checking
function must be efficient. Care should be taken that the dirty checking function does not do any DOM access, as DOM
access is orders of magnitude slower then property access on JavaScript object.

Developer GuideDeveloper Guide // didi

Dependency Injection (DI) is a software design pattern that deals with how code gets hold of its dependencies.

For in-depth discussion about DI, see Dependency Injection at Wikipedia, Inversion of Control by Martin Fowler, or read
about DI in your favorite software design pattern book.

DI in a nutshell
There are only three ways how an object or a function can get a hold of its dependencies:

The dependency can be created, typically using the new operator.1.

The dependency can be looked up by referring to a global variable.2.

The dependency can be passed in to where it is needed.3.

The first two option of creating or looking up dependencies are not optimal, because they hard code the dependency,
making it difficult, if not impossible, to modify the dependencies. This is especially problematic in tests, where it is often
desirable to provide mock dependencies for test isolation.

The third option is the most viable, since it removes the responsibility of locating the dependency from the component. The
dependency is simply handed to the component.

functionfunction SomeClassSomeClass((greetergreeter)) {{1.

 thisthis..greeter greeter == greeter greeter2.

}}3.

 4.

SomeClassSomeClass..prototypeprototype..doSomething doSomething == functionfunction((namename)) {{5.

 thisthis..greetergreeter..greetgreet((namename););6.

}}7.

In the above example the SomeClass is not concerned with locating the greeter dependency, it is simply handed the

greeter at runtime.

This is desirable, but it puts the responsibility of getting hold of the dependency onto the code responsible for the
construction of SomeClass.

To manage the responsibility of dependency creation, each Angular application has an injector. The injector is a service

locator that is responsible for construction and lookup of dependencies.

Here is an example of using the injector service.

// Provide the wiring information in a module// Provide the wiring information in a module1.

angularangular..modulemodule(('myModule''myModule',, []).[]).2.

 3.

 // Teach the injector how to build a 'greeter'// Teach the injector how to build a 'greeter'4.

 // Notice that greeter itself is dependent on '$window'// Notice that greeter itself is dependent on '$window'5.

 factory factory(('greeter''greeter',, functionfunction(($window$window)) {{6.

 // This is a factory function, and is responsible for // This is a factory function, and is responsible for 7.

 // creating the 'greet' service.// creating the 'greet' service.8.

 returnreturn {{9.

 greet greet:: functionfunction((texttext)) {{10.

 $window $window..alertalert((texttext););11.

 }}12.

 };};13.

 });});14.

 15.

// New injector is created from the module. // New injector is created from the module. 16.

// (This is usually done automatically by angular bootstrap)// (This is usually done automatically by angular bootstrap)17.

varvar injector injector == angular angular..injectorinjector([(['myModule''myModule',, 'ng''ng']);]);18.

 19.

// Request any dependency from the injector// Request any dependency from the injector20.

varvar greeter greeter == injector injector..getget(('greeter''greeter'););21.

Asking for dependencies solves the issue of hard coding, but it also means that the injector needs to be passed throughout
the application. Passing the injector breaks the Law of Demeter. To remedy this, we turn the dependency lookup
responsibility to the injector by declaring the dependencies as in this example:

<!-- Given this HTML --><!-- Given this HTML -->1.

<div<div ng-controllerng-controller=="MyController""MyController">>2.

 <button<button ng-clickng-click=="sayHello()""sayHello()">>HelloHello</button></button>3.

</div></div>4.

// And this controller definition// And this controller definition1.

functionfunction MyControllerMyController(($scope$scope,, greeter greeter)) {{2.

 $scope $scope..sayHello sayHello == functionfunction()() {{3.

 greeter greeter..greetgreet(('Hello World''Hello World'););4.

 };};5.

}}6.

 7.

// The 'ng-controller' directive does this behind the scenes// The 'ng-controller' directive does this behind the scenes8.

injectorinjector..instantiateinstantiate((MyControllerMyController););9.

Notice that by having the ng-controller instantiate the class, it can satisfy all of the dependencies of the

MyController without the controller ever knowing about the injector. This is the best outcome. The application code

simply ask for the dependencies it needs, without having to deal with the injector. This setup does not break the Law of
Demeter.

How does the injector know what service needs to be injected?

The application developer needs to provide annotation information that the injector uses in order to resolve the
dependencies. Throughout Angular certain API functions are invoked using the injector, as per the API documentation. The
injector needs to know what services to inject into the function. Below are three equivalent ways of annotating your code
with service name information. These can be used interchangeably as you see fit and are equivalent.

The simplest way to get hold of the dependencies, is to assume that the function parameter names are the names of the
dependencies.

functionfunction MyControllerMyController(($scope$scope,, greeter greeter)) {{1.

 2.

}}3.

Given a function the injector can infer the names of the service to inject by examining the function declaration and extracting
the parameter names. In the above example $scope, and greeter are two services which need to be injected into the

function.

While straightforward, this method will not work with JavaScript minifiers/obfuscators as they rename the method
parameter names. This makes this way of annotating only useful for pretotyping, and demo applications.

To allow the minifers to rename the function parameters and still be able to inject right services the function needs to be
annotate with the $inject property. The $inject property is an array of service names to inject.

varvar MyControllerMyController == functionfunction((renamed$scoperenamed$scope,, renamedGreeter renamedGreeter)) {{1.

 2.

}}3.

MyControllerMyController..$inject $inject == [['$scope''$scope',, 'greeter''greeter'];];4.

Care must be taken that the $inject annotation is kept in sync with the actual arguments in the function declaration.

This method of annotation is useful for controller declarations since it assigns the annotation information with the function.

Sometimes using the $inject annotation style is not convenient such as when annotating directives.

For example:

someModulesomeModule..factoryfactory(('greeter''greeter',, functionfunction(($window$window)) {{1.

 ...;...;2.

});});3.

Results in code bloat due to the need of temporary variable:

varvar greeterFactory greeterFactory == functionfunction((renamed$windowrenamed$window)) {{1.

 ...;...;2.

};};3.

 4.

greeterFactorygreeterFactory..$inject $inject == [['$window''$window'];];5.

 6.

someModulesomeModule..factoryfactory(('greeter''greeter',, greeterFactory greeterFactory););7.

For this reason the third annotation style is provided as well.

someModulesomeModule..factoryfactory(('greeter''greeter',, [['$window''$window',, functionfunction((renamed$windowrenamed$window)) {{1.

 ...;...;2.

}]);}]);3.

Keep in mind that all of the annotation styles are equivalent and can be used anywhere in Angular where injection is

supported.

DI is pervasive throughout Angular. It is typically used in controllers and factory methods.

DI in controllers
Controllers are classes which are responsible for application behavior. The recommended way of declaring controllers is:

varvar MyControllerMyController == functionfunction(($scope$scope,, dep1 dep1,, dep2 dep2)) {{1.

 2.

 $scope $scope..aMethod aMethod == functionfunction()() {{3.

 4.

 }}5.

}}6.

MyControllerMyController..$inject $inject == [['$scope''$scope',, 'dep1''dep1',, 'dep2''dep2'];];7.

Factory methods
Factory methods are responsible for creating most objects in Angular. Examples are directives, services, and filters. The
factory methods are registered with the module, and the recommended way of declaring factories is:

angualarangualar..modulemodule(('myModule''myModule',, []).[]).1.

 config config([(['depProvider''depProvider',, functionfunction((depProviderdepProvider){){2.

 3.

 }]).}]).4.

 factory factory(('serviceId''serviceId',, [['depService''depService',, functionfunction((depServicedepService)) {{5.

 6.

 }]).}]).7.

 directive directive(('directiveName''directiveName',, [['depService''depService',, functionfunction((depServicedepService)) {{8.

 9.

 }]).}]).10.

 filter filter(('filterName''filterName',, [['depService''depService',, functionfunction((depServicedepService)) {{11.

 12.

 }]).}]).13.

 run run([(['depService''depService',, functionfunction((depServicedepService)) {{14.

 15.

 }]);}]);16.

Developer GuideDeveloper Guide // dev_guidedev_guide // mvcmvc

While Model-View-Controller (MVC) has acquired different shades of meaning over the years since it first appeared,
Angular incorporates the basic principles behind the original MVC software design pattern into its way of building client-side
web applications.

The MVC pattern summarized:

Separate applications into distinct presentation, data, and logic components
Encourage loose coupling between these components

Along with services and dependency injection, MVC makes angular applications better structured, easier to maintain and
more testable.

The following topics explain how angular incorporates the MVC pattern into the angular way of developing web applications:

Understanding the Model Component
Understanding the Controller Component
Understanding the View Component

Developer GuideDeveloper Guide // Understanding the Model ComponentUnderstanding the Model Component

Depending on the context of the discussion in the Angular documentation, the term model can refer to either a single object
representing one entity (for example, a model called "phones" with its value being an array of phones) or the entire data
model for the application (all entities).

In Angular, a model is any data that is reachable as a property of an angular Scope object. The name of the property is the
model identifier and the value is any JavaScript object (including arrays and primitives).

The only requirement for a JavaScript object to be a model in Angular is that the object must be referenced by an Angular
scope as a property of that scope object. This property reference can be created explicitly or implicitly.

You can create models by explicitly creating scope properties referencing JavaScript objects in the following ways:

Make a direct property assignment to the scope object in JavaScript code; this most commonly occurs in controllers:

Use an angular expression with an assignment operator in templates:

Use ngInit directive in templates (for toy/example apps only, not recommended for real applications):

Angular creates models implicitly (by creating a scope property and assigning it a suitable value) when processing the
following template constructs:

Form input, select, textarea and other form elements:

The code above creates a model called "query" on the current scope with the value set to "fluffy cloud".

An iterator declaration in ngRepeater:

The code above creates one child scope for each item in the "phones" array and creates a "phone" object (model) on
each of these scopes with its value set to the value of "phone" in the array.

In Angular, a JavaScript object stops being a model when:

No Angular scope contains a property that references the object.

All Angular scopes that contain a property referencing the object become stale and eligible for garbage collection.

The following illustration shows a simple data model created implicitly from a simple template:

Related Topics
About MVC in Angular
Understanding the Controller Component
Understanding the View Component

Developer GuideDeveloper Guide // Understanding the Controller ComponentUnderstanding the Controller Component

In Angular, a controller is a JavaScript function(type/class) that is used to augment instances of angular Scope, excluding
the root scope. When you or Angular create a new child scope object via the scope.$new API , there is an option to pass

in a controller as a method argument. This will tell Angular to associate the controller with the new scope and to augment
its behavior.

Use controllers to:

Set up the initial state of a scope object.
Add behavior to the scope object.

Typically, when you create an application you need to set up an initial state for an Angular scope.

Angular applies (in the sense of JavaScript's Function#apply) the controller constructor function to a new Angular scope

object, which sets up an initial scope state. This means that Angular never creates instances of the controller type (by
invoking the new operator on the controller constructor). Constructors are always applied to an existing scope object.

You set up the initial state of a scope by creating model properties. For example:

function GreetingCtrl($scope) { $scope.greeting = 'Hola!'; }

The GreetingCtrl controller creates a greeting model which can be referred to in a template.

NOTE: Many of the examples in the documentation show the creation of functions in the global scope. This is only for
demonstration purposes - in a real application you should use the .controller method of your Angular module for your

application as follows:

var myApp = angular.module('myApp',[]);

myApp.controller('GreetingCtrl', ['$scope', function(scope) { scope.greeting = 'Hola!'; }]);

Note also that we use the array notation to explicitly specify the dependency of the controller on the $scope service

provided by Angular.

Behavior on an Angular scope object is in the form of scope method properties available to the template/view. This behavior
interacts with and modifies the application model.

As discussed in the Model section of this guide, any objects (or primitives) assigned to the scope become model
properties. Any functions assigned to the scope are available in the template/view, and can be invoked via angular
expressions and ng event handler directives (e.g. ngClick).

In general, a controller shouldn't try to do too much. It should contain only the business logic needed for a single view.

The most common way to keep controllers slim is by encapsulating work that doesn't belong to controllers into services and
then using these services in controllers via dependency injection. This is discussed in the Dependency Injection Services
sections of this guide.

Do not use controllers for:

Any kind of DOM manipulation — Controllers should contain only business logic. DOM manipulation—the presentation
logic of an application—is well known for being hard to test. Putting any presentation logic into controllers significantly

affects testability of the business logic. Angular offers databinding for automatic DOM manipulation. If you have to
perform your own manual DOM manipulation, encapsulate the presentation logic in directives.
Input formatting — Use angular form controls instead.
Output filtering — Use angular filters instead.
To run stateless or stateful code shared across controllers — Use angular services instead.
To instantiate or manage the life-cycle of other components (for example, to create service instances).

You can associate controllers with scope objects explicitly via the scope.$new api or implicitly via the ngController

directive or $route service.

Controller Constructor and Methods Example
To illustrate how the controller component works in angular, let's create a little app with the following components:

A template with two buttons and a simple message
A model consisting of a string named spice

A controller with two functions that set the value of spice

The message in our template contains a binding to the spice model, which by default is set to the string "very". Depending

on which button is clicked, the spice model is set to chili or jalapeño, and the message is automatically updated by

data-binding.

A Spicy Controller Example

<body<body ng-controllerng-controller=="SpicyCtrl""SpicyCtrl">>1.

 <button<button ng-clickng-click=="chiliSpicy()""chiliSpicy()">>ChiliChili</button></button>2.

 <button<button ng-clickng-click=="jalapenoSpicy()""jalapenoSpicy()">>JalapeñoJalapeño</button></button>3.

 <p><p>The food is {{spice}} spicy!The food is {{spice}} spicy!</p></p>4.

</body></body>5.

 6.

function SpicyCtrl($scope) {function SpicyCtrl($scope) {7.

 $scope.spice = 'very'; $scope.spice = 'very';8.

 $scope.chiliSpicy = function() { $scope.chiliSpicy = function() {9.

 $scope.spice = 'chili'; $scope.spice = 'chili';10.

 } }11.

 $scope.jalapenoSpicy = function() { $scope.jalapenoSpicy = function() {12.

 $scope.spice = 'jalapeño'; $scope.spice = 'jalapeño';13.

 } }14.

}}15.

Things to notice in the example above:

The ngController directive is used to (implicitly) create a scope for our template, and the scope is augmented

(managed) by the SpicyCtrl controller.

SpicyCtrl is just a plain JavaScript function. As an (optional) naming convention the name starts with capital letter

and ends with "Ctrl" or "Controller".
Assigning a property to $scope creates or updates the model.

Controller methods can be created through direct assignment to scope (the chiliSpicy method)

Both controller methods are available in the template (for the body element and and its children).

NB: Previous versions of Angular (pre 1.0 RC) allowed you to use this interchangeably with the $scope method, but

this is no longer the case. Inside of methods defined on the scope this and $scope are interchangeable (angular sets

this to $scope), but not otherwise inside your controller constructor.

NB: Previous versions of Angular (pre 1.0 RC) added prototype methods into the scope automatically, but this is no
longer the case; all methods need to be added manually to the scope.

Controller methods can also take arguments, as demonstrated in the following variation of the previous example.

Controller Method Arguments Example

<body<body ng-controllerng-controller=="SpicyCtrl""SpicyCtrl">>1.

 <input<input ng-modelng-model=="customSpice""customSpice" valuevalue=="wasabi""wasabi">>2.

 <button<button ng-clickng-click=="spicy('chili')""spicy('chili')">>ChiliChili</button></button>3.

 <button<button ng-clickng-click=="spicy(customSpice)""spicy(customSpice)">>Custom spiceCustom spice</button></button>4.

 <p><p>The food is {{spice}} spicy!The food is {{spice}} spicy!</p></p>5.

</body></body>6.

 7.

function SpicyCtrl($scope) {function SpicyCtrl($scope) {8.

 $scope.spice = 'very'; $scope.spice = 'very';9.

 $scope.spicy = function(spice) { $scope.spicy = function(spice) {10.

 $scope.spice = spice; $scope.spice = spice;11.

 } }12.

}}13.

Notice that the SpicyCtrl controller now defines just one method called spicy, which takes one argument called spice.

The template then refers to this controller method and passes in a string constant 'chili' in the binding for the first

button and a model property spice (bound to an input box) in the second button.

Controller Inheritance Example
Controller inheritance in Angular is based on Scope inheritance. Let's have a look at an example:

<body<body ng-controllerng-controller=="MainCtrl""MainCtrl">>1.

 <p><p>Good {{timeOfDay}}, {{name}}!Good {{timeOfDay}}, {{name}}!</p></p>2.

 <div<div ng-controllerng-controller=="ChildCtrl""ChildCtrl">>3.

 <p><p>Good {{timeOfDay}}, {{name}}!Good {{timeOfDay}}, {{name}}!</p></p>4.

 <p<p ng-controllerng-controller=="BabyCtrl""BabyCtrl">>Good {{timeOfDay}}, {{name}}!Good {{timeOfDay}}, {{name}}!</p></p>5.

</body></body>6.

 7.

function MainCtrl($scope) {function MainCtrl($scope) {8.

 $scope.timeOfDay = 'morning'; $scope.timeOfDay = 'morning';9.

 $scope.name = 'Nikki'; $scope.name = 'Nikki';10.

}}11.

 12.

function ChildCtrl($scope) {function ChildCtrl($scope) {13.

 $scope.name = 'Mattie'; $scope.name = 'Mattie';14.

}}15.

 16.

function BabyCtrl($scope) {function BabyCtrl($scope) {17.

 $scope.timeOfDay = 'evening'; $scope.timeOfDay = 'evening';18.

 $scope.name = 'Gingerbreak Baby'; $scope.name = 'Gingerbreak Baby';19.

}}20.

Notice how we nested three ngController directives in our template. This template construct will result in 4 scopes

being created for our view:

The root scope
The MainCtrl scope, which contains timeOfDay and name models

The ChildCtrl scope, which shadows the name model from the previous scope and inherits the timeOfDay model

The BabyCtrl scope, which shadows both the timeOfDay model defined in MainCtrl and name model defined in

the ChildCtrl

Inheritance works between controllers in the same way as it does with models. So in our previous examples, all of the
models could be replaced with controller methods that return string values.

Note: Standard prototypical inheritance between two controllers doesn't work as one might expect, because as we
mentioned earlier, controllers are not instantiated directly by Angular, but rather are applied to the scope object.

Testing Controllers
Although there are many ways to test a controller, one of the best conventions, shown below, involves injecting the
$rootScope and $controller

Controller Function:

functionfunction myController myController(($scope$scope)) {{1.

 $scope $scope..spices spices == [{[{"name""name"::"pasilla""pasilla",, "spiciness""spiciness"::"mild""mild"},},2.

 {{"name""name"::"jalapeno""jalapeno",, "spiceiness""spiceiness"::"hot hot hot!""hot hot hot!"},},3.

 {{"name""name"::"habanero""habanero",, "spiceness""spiceness"::"LAVA HOT!!""LAVA HOT!!"}];}];4.

 5.

 $scope $scope..spice spice == "habanero""habanero";;6.

}}7.

Controller Test:

describedescribe(('myController function''myController function',, functionfunction()() {{1.

 2.

 describe describe(('myController''myController',, functionfunction()() {{3.

 varvar scope scope;;4.

 5.

 beforeEach beforeEach((injectinject((functionfunction(($rootScope$rootScope,, $controller $controller)) {{6.

 scope scope == $rootScope $rootScope..$new$new();();7.

 varvar ctrl ctrl == $controller $controller((myControllermyController,, {{$scope$scope:: scope scope});});8.

 }));}));9.

 10.

 it it(('should create "spices" model with 3 spices''should create "spices" model with 3 spices',, functionfunction()() {{11.

 expect expect((scopescope..spicesspices..lengthlength).).toBetoBe((33););12.

 });});13.

 14.

 it it(('should set the default value of spice''should set the default value of spice',, functionfunction()() {{15.

 expect expect((scopescope..spicespice).).toBetoBe(('habanero''habanero'););16.

 });});17.

 });});18.

});});19.

If you need to test a nested controller you need to create the same scope hierarchy in your test that exists in the DOM.

describedescribe(('state''state',, functionfunction()() {{1.

 varvar mainScope mainScope,, childScope childScope,, babyScope babyScope;;2.

 3.

 beforeEach beforeEach((injectinject((functionfunction(($rootScope$rootScope,, $controller $controller)) {{4.

 mainScope mainScope == $rootScope $rootScope..$new$new();();5.

 varvar mainCtrl mainCtrl == $controller $controller((MainCtrlMainCtrl,, {{$scope$scope:: mainScope mainScope});});6.

 childScope childScope == mainScope mainScope..newnew();();7.

 varvar childCtrl childCtrl == $controller $controller((ChildCtrlChildCtrl,, {{$scope$scope:: childScope childScope});});8.

 babyScope babyScope == childCtrl childCtrl..newnew();();9.

 varvar babyCtrl babyCtrl == $controller $controller((BabyCtrlBabyCtrl,, {{$scope$scope:: babyScope babyScope});});10.

 }));}));11.

 12.

 it it(('should have over and selected''should have over and selected',, functionfunction()() {{13.

 expect expect((mainScopemainScope..timeOfDaytimeOfDay).).toBetoBe(('morning''morning'););14.

 expect expect((mainScopemainScope..namename).).toBetoBe(('Nikki''Nikki'););15.

 expect expect((childScopechildScope..timeOfDaytimeOfDay).).toBetoBe(('morning''morning'););16.

 expect expect((childScopechildScope..namename).).toBetoBe(('Mattie''Mattie'););17.

 expect expect((babyScopebabyScope..timeOfDaytimeOfDay).).toBetoBe(('evening''evening'););18.

 expect expect((babyScopebabyScope..namename).).toBetoBe(('Gingerbreak Baby''Gingerbreak Baby'););19.

 });});20.

});});21.

Related Topics
About MVC in Angular
Understanding the Model Component
Understanding the View Component

Developer GuideDeveloper Guide // Understanding the View ComponentUnderstanding the View Component

In Angular, the view is the DOM loaded and rendered in the browser, after Angular has transformed the DOM based on
information in the template, controller and model.

In the Angular implementation of MVC, the view has knowledge of both the model and the controller. The view knows about
the model where two-way data-binding occurs. The view has knowledge of the controller through Angular directives, such
as ngController and ngView, and through bindings of this form: {{someControllerFunction()}}. In these ways,

the view can call functions in an associated controller function.

Related Topics
About MVC in Angular
Understanding the Model Component
Understanding the Controller Component

Developer GuideDeveloper Guide // dev_guidedev_guide // e2e-testinge2e-testing

As applications grow in size and complexity, it becomes unrealistic to rely on manual testing to verify the correctness of
new features, catch bugs and notice regressions.

To solve this problem, we have built an Angular Scenario Runner which simulates user interactions that will help you verify
the health of your Angular application.

You will write scenario tests in JavaScript, which describe how your application should behave, given a certain interaction in
a specific state. A scenario is comprised of one or more it blocks (you can think of these as the requirements of your

application), which in turn are made of commands and expectations. Commands tell the Runner to do something with the
application (such as navigate to a page or click on a button), and expectations tell the Runner to assert something about the
state (such as the value of a field or the current URL). If any expectation fails, the runner marks the it as "failed" and

continues on to the next one. Scenarios may also have beforeEach and afterEach blocks, which will be run before (or
after) each it block, regardless of whether they pass or fail.

In addition to the above elements, scenarios may also contain helper functions to avoid duplicating code in the it blocks.

Here is an example of a simple scenario:

describedescribe(('Buzz Client''Buzz Client',, functionfunction()() {{1.

itit(('should filter results''should filter results',, functionfunction()() {{2.

 input input(('user''user').).enterenter(('jacksparrow''jacksparrow'););3.

 element element((':button'':button').).clickclick();();4.

 expect expect((repeaterrepeater(('ul li''ul li').).countcount()).()).toEqualtoEqual((1010););5.

 input input(('filterText''filterText').).enterenter(('Bees''Bees'););6.

 expect expect((repeaterrepeater(('ul li''ul li').).countcount()).()).toEqualtoEqual((11););7.

});});8.

});});9.

This scenario describes the requirements of a Buzz Client, specifically, that it should be able to filter the stream of the user.
It starts by entering a value in the 'user' input field, clicking the only button on the page, and then it verifies that there are 10
items listed. It then enters 'Bees' in the 'filterText' input field and verifies that the list is reduced to a single item.

The API section below lists the available commands and expectations for the Runner.

Source: https://github.com/angular/angular.js/blob/master/src/ngScenario/dsl.js

pause()
Pauses the execution of the tests until you call resume() in the console (or click the resume link in the Runner UI).

sleep(seconds)
Pauses the execution of the tests for the specified number of seconds.

browser().navigateTo(url)
Loads the url into the test frame.

browser().navigateTo(url, fn)
Loads the URL returned by fn into the testing frame. The given url is only used for the test output. Use this when the

destination URL is dynamic (that is, the destination is unknown when you write the test).

browser().reload()
Refreshes the currently loaded page in the test frame.

browser().window().href()
Returns the window.location.href of the currently loaded page in the test frame.

browser().window().path()
Returns the window.location.pathname of the currently loaded page in the test frame.

browser().window().search()
Returns the window.location.search of the currently loaded page in the test frame.

browser().window().hash()
Returns the window.location.hash (without #) of the currently loaded page in the test frame.

browser().location().url()
Returns the $location.url() of the currently loaded page in the test frame.

browser().location().path()
Returns the $location.path() of the currently loaded page in the test frame.

browser().location().search()
Returns the $location.search() of the currently loaded page in the test frame.

browser().location().hash()
Returns the $location.hash() of the currently loaded page in the test frame.

expect(future).{matcher}
Asserts the value of the given future satisfies the matcher. All API statements return a future object, which get a

value assigned after they are executed. Matchers are defined using angular.scenario.matcher, and they use the

value of futures to run the expectation. For example:
expect(browser().location().href()).toEqual('http://www.google.com')

expect(future).not().{matcher}
Asserts the value of the given future satisfies the negation of the matcher.

using(selector, label)
Scopes the next DSL element selection.

binding(name)
Returns the value of the first binding matching the given name.

input(name).enter(value)
Enters the given value in the text field with the given name.

input(name).check()
Checks/unchecks the checkbox with the given name.

input(name).select(value)
Selects the given value in the radio button with the given name.

input(name).val()
Returns the current value of an input field with the given name.

repeater(selector, label).count()
Returns the number of rows in the repeater matching the given jQuery selector. The label is used for test output.

repeater(selector, label).row(index)
Returns an array with the bindings in the row at the given index in the repeater matching the given jQuery selector. The

label is used for test output.

repeater(selector, label).column(binding)
Returns an array with the values in the column with the given binding in the repeater matching the given jQuery

selector. The label is used for test output.

select(name).option(value)
Picks the option with the given value on the select with the given name.

select(name).option(value1, value2...)

Picks the options with the given values on the multi select with the given name.

element(selector, label).count()
Returns the number of elements that match the given jQuery selector. The label is used for test output.

element(selector, label).click()
Clicks on the element matching the given jQuery selector. The label is used for test output.

element(selector, label).query(fn)
Executes the function fn(selectedElements, done), where selectedElements are the elements that match the given

jQuery selector and done is a function that is called at the end of the fn function. The label is used for test output.

element(selector, label).{method}()
Returns the result of calling method on the element matching the given jQuery selector, where method can be any of

the following jQuery methods: val, text, html, height, innerHeight, outerHeight, width, innerWidth,

outerWidth, position, scrollLeft, scrollTop, offset. The label is used for test output.

element(selector, label).{method}(value)
Executes the method passing in value on the element matching the given jQuery selector, where method can be any

of the following jQuery methods: val, text, html, height, innerHeight, outerHeight, width, innerWidth,

outerWidth, position, scrollLeft, scrollTop, offset. The label is used for test output.

element(selector, label).{method}(key)
Returns the result of calling method passing in key on the element matching the given jQuery selector, where method

can be any of the following jQuery methods: attr, prop, css. The label is used for test output.

element(selector, label).{method}(key, value)
Executes the method passing in key and value on the element matching the given jQuery selector, where method can

be any of the following jQuery methods: attr, prop, css. The label is used for test output.

JavaScript is a dynamically typed language which comes with great power of expression, but it also come with almost
no-help from the compiler. For this reason we feel very strongly that any code written in JavaScript needs to come with a
strong set of tests. We have built many features into angular which makes testing your angular applications easy. So there
is no excuse for not testing.

Developer GuideDeveloper Guide // dev_guidedev_guide // templatestemplates

An Angular template is the declarative specification that, along with information from the model and controller, becomes the
rendered view that a user sees in the browser. It is the static DOM, containing HTML, CSS, and angular-specific elements
and angular-specific element attributes. The Angular elements and attributes direct angular to add behavior and transform
the template DOM into the dynamic view DOM.

These are the types of Angular elements and element attributes you can use in a template:

Directive — An attribute or element that augments an existing DOM element or represents a reusable DOM component
- a widget.
Markup — The double curly brace notation {{ }} to bind expressions to elements is built-in angular markup.

Filter — Formats your data for display to the user.
Form controls — Lets you validate user input.

Note: In addition to declaring the elements above in templates, you can also access these elements in JavaScript code.

The following code snippet shows a simple Angular template made up of standard HTML tags along with Angular directives
and curly-brace bindings with expressions:

<html<html ng-appng-app>>1.

 <!-- Body tag augmented with ngController directive --><!-- Body tag augmented with ngController directive -->2.

 <body<body ng-controllerng-controller=="MyController""MyController">>3.

 <input<input ng-modelng-model=="foo""foo" valuevalue=="bar""bar">>4.

 <!-- Button tag with ng-click directive, and<!-- Button tag with ng-click directive, and5.

 string expression 'buttonText' string expression 'buttonText'6.

 wrapped in "{{ }}" markup --> wrapped in "{{ }}" markup -->7.

 <button<button ng-clickng-click=="changeFoo()""changeFoo()">>{{buttonText}}{{buttonText}}</button></button>8.

 <script<script srcsrc=="angular.js""angular.js">>9.

 </body></body>10.

</html></html>11.

In a simple single-page app, the template consists of HTML, CSS, and angular directives contained in just one HTML file
(usually index.html). In a more complex app, you can display multiple views within one main page using "partials", which

are segments of template located in separate HTML files. You "include" the partials in the main page using the $route

service in conjunction with the ngView directive. An example of this technique is shown in the angular tutorial, in steps

seven and eight.

Related Topics
Angular Filters
Angular Forms

Related API
API Reference

Developer GuideDeveloper Guide // Working With CSS in AngularWorking With CSS in Angular

Angular sets these CSS classes. It is up to your application to provide useful styling.

ng-invalid, ng-valid

Usage: angular applies this class to an input widget element if that element's input does not pass validation. (see
input directive).

ng-pristine, ng-dirty

Usage: angular input directive applies ng-pristine class to a new input widget element which did not have

user interaction. Once the user interacts with the input widget the class is changed to ng-dirty.

Related Topics
Angular Templates
Angular Forms

Developer GuideDeveloper Guide // Data Binding in AngularData Binding in Angular

Data-binding in Angular web apps is the automatic syncronization of data between the model and view components. The
way that Angular implements data-binding lets you treat the model as the single-source-of-truth in your application. The
view is a projection of the model at all times. When the model changes, the view reflects the change, and vice versa.

Data Binding in Classical Template Systems

 Most templating systems bind data in only one

direction: they merge template and model components together into a view, as illustrated in the diagram. After the merge
occurs, changes to the model or related sections of the view are NOT automatically reflected in the view. Worse, any
changes that the user makes to the view are not reflected in the model. This means that the developer has to write code
that constantly syncs the view with the model and the model with the view.

Data Binding in Angular Templates

 The way Angular templates works is different, as

illustrated in the diagram. They are different because first the template (which is the uncompiled HTML along with any
additional markup or directives) is compiled on the browser, and second, the compilation step produces a live view. We say
live because any changes to the view are immediately reflected in the model, and any changes in the model are propagated
to the view. This makes the model always the single-source-of-truth for the application state, greatly simplifying the
programming model for the developer. You can think of the view as simply an instant projection of your model.

Because the view is just a projection of the model, the controller is completely separated from the view and unaware of it.
This makes testing a snap because it is easy to test your controller in isolation without the view and the related

DOM/browser dependency.

Related Topics
Angular Scopes
Angular Templates

Developer GuideDeveloper Guide // Understanding Angular FiltersUnderstanding Angular Filters

Angular filters format data for display to the user. In addition to formatting data, filters can also modify the DOM. This
allows filters to handle tasks such as conditionally applying CSS styles to filtered output.

For example, you might have a data object that needs to be formatted according to the locale before displaying it to the
user. You can pass expressions through a chain of filters like this:

The expression evaluator simply passes the value of name to uppercase filter.

Related Topics
Using Angular Filters
Creating Angular Filters

Related API
Angular Filter API

index.html script.js End to end test

Developer GuideDeveloper Guide // Creating Angular FiltersCreating Angular Filters

Writing your own filter is very easy: just register a new filter (injectable) factory function with your module. This factory
function should return a new filter function which takes the input value as the first argument. Any filter arguments are
passed in as additional arguments to the filter function.

The following sample filter reverses a text string. In addition, it conditionally makes the text upper-case and assigns color.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="MyReverseModule""MyReverseModule">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="Ctrl""Ctrl">>8.

 <input<input ng-modelng-model=="greeting""greeting" typetype=="greeting""greeting">
>
9.

 No filter: {{greeting}} No filter: {{greeting}}

10.

 Reverse: {{greeting|reverse}} Reverse: {{greeting|reverse}}

11.

 Reverse + uppercase: {{greeting|reverse:true}} Reverse + uppercase: {{greeting|reverse:true}}

12.

 </div></div>13.

 </body></body>14.

</html></html>15.

script.js :

angularangular..modulemodule(('MyReverseModule''MyReverseModule',, []).[]).1.

 filter filter(('reverse''reverse',, functionfunction()() {{2.

 returnreturn functionfunction((inputinput,, uppercase uppercase)) {{3.

 varvar outout == """";;4.

 forfor ((varvar i i == 00;; i i << input input..lengthlength;; i i++)++) {{5.

 outout == input input..charAtcharAt((ii)) ++ outout;;6.

 }}7.

 // conditional based on optional argument// conditional based on optional argument8.

 ifif ((uppercaseuppercase)) {{9.

 outout == outout..toUpperCasetoUpperCase();();10.

 }}11.

 returnreturn outout;;12.

 }}13.

 });});14.

 15.

functionfunction CtrlCtrl(($scope$scope)) {{16.

 $scope $scope..greeting greeting == 'hello''hello';;17.

}}18.

End to end test :

itit(('should reverse greeting''should reverse greeting',, functionfunction()() {{1.

 expect expect((bindingbinding(('greeting|reverse''greeting|reverse')).)).toEqualtoEqual(('olleh''olleh'););2.

 input input(('greeting''greeting').).enterenter(('ABC''ABC'););3.

 expect expect((bindingbinding(('greeting|reverse''greeting|reverse')).)).toEqualtoEqual(('CBA''CBA'););4.

});});5.

Demo

Related Topics
Understanding Angular Filters
Angular HTML Compiler

Related API
Angular Filter API

Developer GuideDeveloper Guide // Using Angular FiltersUsing Angular Filters

Filters can be part of any api/ng.$rootScope.Scope evaluation but are typically used to format expressions in bindings

in your templates:

Filters typically transform the data to a new data type, formatting the data in the process. Filters can also be chained, and
can take optional arguments.

You can chain filters using this syntax:

You can also pass colon-delimited arguments to filters, for example, to display the number 123 with 2 decimal points:

Here are some examples that show values before and after applying different filters to an expression in a binding:

No filter: {{1234.5678}} => 1234.5678

Number filter: {{1234.5678|number}} => 1,234.57. Notice the "," and rounding to two significant digits.

Filter with arguments: {{1234.5678|number:5}} => 1,234.56780. Filters can take optional arguments,

separated by colons in a binding. For example, the "number" filter takes a number argument that specifies how many
digits to display to the right of the decimal point.

Related Topics
Understanding Angular Filters
Creating Angular Filters

Related API
Angular Filter API

Developer GuideDeveloper Guide // dev_guidedev_guide // servicesservices

Services are a feature that Angular brings to client-side web apps from the server side, where services have been
commonly used for a long time. Services in Angular apps are substitutable objects that are wired together using
dependency injection (DI).

Related Topics
Understanding Angular Services
Creating Angular Services
Managing Service Dependencies
Injecting Services Into Controllers
Testing Angular Services

Related API
Angular Service API

Developer GuideDeveloper Guide // Using $locationUsing $location

The $location service parses the URL in the browser address bar (based on the window.location) and makes the URL

available to your application. Changes to the URL in the address bar are reflected into $location service and changes to
$location are reflected into the browser address bar.

The $location service:

Exposes the current URL in the browser address bar, so you can
Watch and observe the URL.
Change the URL.

Synchronizes the URL with the browser when the user
Changes the address bar.
Clicks the back or forward button (or clicks a History link).
Clicks on a link.

Represents the URL object as a set of methods (protocol, host, port, path, search, hash).

Comparing $location to window.location

window.location $location service

purpose allow read/write access to the current
browser location

same

API exposes "raw" object with properties
that can be directly modified

exposes jQuery-style getters and
setters

integration with angular application
life-cycle

none knows about all internal life-cycle
phases, integrates with $watch, ...

seamless integration with HTML5
API

no yes (with a fallback for legacy
browsers)

aware of docroot/context from
which the application is loaded

no - window.location.path returns
"/docroot/actual/path"

yes - $location.path() returns "/actual
/path"

When should I use $location?
Any time your application needs to react to a change in the current URL or if you want to change the current URL in the
browser.

What does it not do?
It does not cause a full page reload when the browser URL is changed. To reload the page after changing the URL, use the
lower-level API, $window.location.href.

The $location service can behave differently, depending on the configuration that was provided to it when it was

instantiated. The default configuration is suitable for many applications, for others customizing the configuration can enable
new features.

Once the $location service is instantiated, you can interact with it via jQuery-style getter and setter methods that allow

you to get or change the current URL in the browser.

$location service configuration
To configure the $location service, retrieve the $locationProvider and set the parameters as follows:

html5Mode(mode): {boolean}
true - see HTML5 mode

false - see Hashbang mode

default: false

hashPrefix(prefix): {string}
prefix used for Hashbang URLs (used in Hashbang mode or in legacy browser in Html5 mode)
default: '!'

Example configuration

$locationProvider$locationProvider..html5Modehtml5Mode((truetrue).).hashPrefixhashPrefix(('!''!'););1.

Getter and setter methods
$location service provides getter methods for read-only parts of the URL (absUrl, protocol, host, port) and getter /

setter methods for url, path, search, hash:

// get the current path// get the current path1.

$location$location..pathpath();();2.

 3.

// change the path// change the path4.

$location$location..pathpath(('/newValue''/newValue'))5.

All of the setter methods return the same $location object to allow chaining. For example, to change multiple segments

in one go, chain setters like this:

$location$location..pathpath(('/newValue''/newValue').).searchsearch({({keykey:: value value});});1.

There is a special replace method which can be used to tell the $location service that the next time the $location service

is synced with the browser, the last history record should be replaced instead of creating a new one. This is useful when
you want to implement redirection, which would otherwise break the back button (navigating back would retrigger the
redirection). To change the current URL without creating a new browser history record you can call:

$location$location..pathpath(('/someNewPath''/someNewPath'););1.

$location$location..replacereplace();();2.

// or you can chain these as: $location.path('/someNewPath').replace();// or you can chain these as: $location.path('/someNewPath').replace();3.

Note that the setters don't update window.location immediately. Instead, the $location service is aware of the

scope life-cycle and coalesces multiple $location mutations into one "commit" to the window.location object during

the scope $digest phase. Since multiple changes to the $location's state will be pushed to the browser as a single

change, it's enough to call the replace() method just once to make the entire "commit" a replace operation rather than an

addition to the browser history. Once the browser is updated, the $location service resets the flag set by replace()

method and future mutations will create new history records, unless replace() is called again.

Setters and character encoding

You can pass special characters to $location service and it will encode them according to rules specified in RFC 3986.

When you access the methods:

All values that are passed to $location setter methods, path(), search(), hash(), are encoded.

Getters (calls to methods without parameters) return decoded values for the following methods path(), search(),

hash().

When you call the absUrl() method, the returned value is a full url with its segments encoded.

When you call the url() method, the returned value is path, search and hash, in the form /path?search=a&

b=c#hash. The segments are encoded as well.

$location service has two configuration modes which control the format of the URL in the browser address bar:

Hashbang mode (the default) and the HTML5 mode which is based on using the HTML5 History API. Applications use the
same API in both modes and the $location service will work with appropriate URL segments and browser APIs to

facilitate the browser URL change and history management.

Hashbang mode HTML5 mode

configuration the default { html5Mode: true }

URL format hashbang URLs in all
browsers

regular URLs in modern browser, hashbang URLs in old
browser

 link rewriting no yes

requires server-side
configuration

no yes

Hashbang mode (default mode)
In this mode, $location uses Hashbang URLs in all browsers.

Example

itit(('should show example''should show example',, inject inject((1.

 functionfunction(($locationProvider$locationProvider)) {{2.

 $locationProvider $locationProvider..html5Modehtml5Mode((falsefalse););3.

 $locationProvider $locationProvider..hashPrefix hashPrefix == '!''!';;4.

 },},5.

 functionfunction(($location$location)) {{6.

 // open http://host.com/base/index.html#!/a// open http://host.com/base/index.html#!/a7.

 $location $location..absUrlabsUrl()() ==== 'http://host.com/base/index.html#!/a''http://host.com/base/index.html#!/a'8.

 $location $location..pathpath()() ==== '/a''/a'9.

 10.

 $location $location..pathpath(('/foo''/foo'))11.

 $location $location..absUrlabsUrl()() ==== 'http://host.com/base/index.html#!/foo''http://host.com/base/index.html#!/foo'12.

 13.

 $location $location..searchsearch()() ==== {}{}14.

 $location $location..searchsearch({({aa:: 'b''b',, c c:: truetrue});});15.

 $location $location..absUrlabsUrl()() ==== 'http://host.com/base/index.html#!/foo?a=b&c''http://host.com/base/index.html#!/foo?a=b&c'16.

 17.

 $location $location..pathpath(('/new''/new').).searchsearch(('x=y''x=y'););18.

 $location $location..absUrlabsUrl()() ==== 'http://host.com/base/index.html#!/new?x=y''http://host.com/base/index.html#!/new?x=y'19.

 }}20.

));));21.

Crawling your app
To allow indexing of your AJAX application, you have to add special meta tag in the head section of your document:

<meta<meta namename=="fragment""fragment" contentcontent=="!""!" />/>1.

This will cause crawler bot to request links with _escaped_fragment_ param so that your server can recognize the

crawler and serve a HTML snapshots. For more information about this technique, see Making AJAX Applications
Crawlable.

HTML5 mode
In HTML5 mode, the $location service getters and setters interact with the browser URL address through the HTML5

history API, which allows for use of regular URL path and search segments, instead of their hashbang equivalents. If the
HTML5 History API is not supported by a browser, the $location service will fall back to using the hashbang URLs

automatically. This frees you from having to worry about whether the browser displaying your app supports the history API
or not; the $location service transparently uses the best available option.

Opening a regular URL in a legacy browser -> redirects to a hashbang URL
Opening hashbang URL in a modern browser -> rewrites to a regular URL

Example

itit(('should show example''should show example',, inject inject((1.

 functionfunction(($locationProvider$locationProvider)) {{2.

 $locationProvider $locationProvider..html5Modehtml5Mode((truetrue););3.

 $locationProvider $locationProvider..hashPrefix hashPrefix == '!''!';;4.

 },},5.

 functionfunction(($location$location)) {{6.

 // in browser with HTML5 history support:// in browser with HTML5 history support:7.

 // open http://host.com/#!/a -> rewrite to http://host.com/a// open http://host.com/#!/a -> rewrite to http://host.com/a8.

 // (replacing the http://host.com/#!/a history record)// (replacing the http://host.com/#!/a history record)9.

 $location $location..pathpath()() ==== '/a''/a'10.

 11.

 $location $location..pathpath(('/foo''/foo'););12.

 $location $location..absUrlabsUrl()() ==== 'http://host.com/foo''http://host.com/foo'13.

 14.

 $location $location..searchsearch()() ==== {}{}15.

 $location $location..searchsearch({({aa:: 'b''b',, c c:: truetrue});});16.

 $location $location..absUrlabsUrl()() ==== 'http://host.com/foo?a=b&c''http://host.com/foo?a=b&c'17.

 18.

 $location $location..pathpath(('/new''/new').).searchsearch(('x=y''x=y'););19.

 $location $location..urlurl()() ==== 'new?x=y''new?x=y'20.

 $location $location..absUrlabsUrl()() ==== 'http://host.com/new?x=y''http://host.com/new?x=y'21.

 22.

 // in browser without html5 history support:// in browser without html5 history support:23.

 // open http://host.com/new?x=y -> redirect to http://host.com/#!/new?x=y// open http://host.com/new?x=y -> redirect to http://host.com/#!/new?x=y24.

 // (again replacing the http://host.com/new?x=y history item)// (again replacing the http://host.com/new?x=y history item)25.

 $location $location..pathpath()() ==== '/new''/new'26.

 $location $location..searchsearch()() ==== {{xx:: 'y''y'}}27.

 28.

 $location $location..pathpath(('/foo/bar''/foo/bar'););29.

 $location $location..pathpath()() ==== '/foo/bar''/foo/bar'30.

 $location $location..urlurl()() ==== '/foo/bar?x=y''/foo/bar?x=y'31.

 $location $location..absUrlabsUrl()() ==== 'http://host.com/#!/foo/bar?x=y''http://host.com/#!/foo/bar?x=y'32.

 }}33.

));));34.

Fallback for legacy browsers
For browsers that support the HTML5 history API, $location uses the HTML5 history API to write path and search. If

the history API is not supported by a browser, $location supplies a Hasbang URL. This frees you from having to worry

about whether the browser viewing your app supports the history API or not; the $location service makes this

transparent to you.

Html link rewriting
When you use HTML5 history API mode, you will need different links in different browsers, but all you have to do is specify
regular URL links, such as: link

When a user clicks on this link,

In a legacy browser, the URL changes to /index.html#!/some?foo=bar

In a modern browser, the URL changes to /some?foo=bar

In cases like the following, links are not rewritten; instead, the browser will perform a full page reload to the original link.

Links that contain target element

Example: link

Absolute links that go to a different domain
Example: link

Links starting with '/' that lead to a different base path when base is defined
Example: link

Server side
Using this mode requires URL rewriting on server side, basically you have to rewrite all your links to entry point of your
application (e.g. index.html)

Crawling your app

index.html script.js

If you want your AJAX application to be indexed by web crawlers, you will need to add the following meta tag to the HEAD
section of your document:

<meta<meta namename=="fragment""fragment" contentcontent=="!""!" />/>1.

This statement causes a crawler to request links with an empty _escaped_fragment_ parameter so that your server can

recognize the crawler and serve it HTML snapshots. For more information about this technique, see Making AJAX
Applications Crawlable.

Relative links
Be sure to check all relative links, images, scripts etc. You must either specify the url base in the head of your main html file
(<base href="/my-base">) or you must use absolute urls (starting with /) everywhere because relative urls will be

resolved to absolute urls using the initial absolute url of the document, which is often different from the root of the
application.

Running Angular apps with the History API enabled from document root is strongly encouraged as it takes care of all
relative link issues.

Sending links among different browsers
Because of rewriting capability in HTML5 mode, your users will be able to open regular url links in legacy browsers and
hashbang links in modern browser:

Modern browser will rewrite hashbang URLs to regular URLs.
Older browsers will redirect regular URLs to hashbang URLs.

Example
Here you can see two $location instances, both in Html5 mode, but on different browsers, so that you can see the

differences. These $location services are connected to a fake browsers. Each input represents address bar of the

browser.

Note that when you type hashbang url into first browser (or vice versa) it doesn't rewrite / redirect to regular / hashbang url,
as this conversion happens only during parsing the initial URL = on page reload.

In this examples we use <base href="/base/index.html" />

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app>>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-non-bindableng-non-bindable classclass=="html5-hashbang-example""html5-hashbang-example">>8.

 <div<div idid=="html5-mode""html5-mode" ng-controllerng-controller=="Html5Cntl""Html5Cntl">>9.

 <h4><h4>Browser with History APIBrowser with History API</h4></h4>10.

 <div<div ng-address-barng-address-bar browserbrowser=="html5""html5"></div>

></div>

11.

 $location.protocol() = {{$location.protocol()}} $location.protocol() = {{$location.protocol()}}

12.

 $location.host() = {{$location.host()}} $location.host() = {{$location.host()}}

13.

 $location.port() = {{$location.port()}} $location.port() = {{$location.port()}}

14.

 $location.path() = {{$location.path()}} $location.path() = {{$location.path()}}

15.

 $location.search() = {{$location.search()}} $location.search() = {{$location.search()}}

16.

 $location.hash() = {{$location.hash()}} $location.hash() = {{$location.hash()}}

17.

 <a>/base/first?a=b/base/first?a=b | |18.

 <a>sec/ond?flag#hashsec/ond?flag#hash | |19.

 <a>externalexternal20.

 </div></div>21.

 22.

 <div<div idid=="hashbang-mode""hashbang-mode" ng-controllerng-controller=="HashbangCntl""HashbangCntl">>23.

 <h4><h4>Browser without History APIBrowser without History API</h4></h4>24.

 <div<div ng-address-barng-address-bar browserbrowser=="hashbang""hashbang"></div>

></div>

25.

 $location.protocol() = {{$location.protocol()}} $location.protocol() = {{$location.protocol()}}

26.

 $location.host() = {{$location.host()}} $location.host() = {{$location.host()}}

27.

 $location.port() = {{$location.port()}} $location.port() = {{$location.port()}}

28.

 $location.path() = {{$location.path()}} $location.path() = {{$location.path()}}

29.

 $location.search() = {{$location.search()}} $location.search() = {{$location.search()}}

30.

 $location.hash() = {{$location.hash()}} $location.hash() = {{$location.hash()}}

31.

 <a>/base/first?a=b/base/first?a=b | |32.

 <a>sec/ond?flag#hashsec/ond?flag#hash | |33.

 <a>externalexternal34.

 </div></div>35.

 </div></div>36.

 </body></body>37.

</html></html>38.

script.js :

functionfunction FakeBrowserFakeBrowser((initUrlinitUrl,, baseHref baseHref)) {{1.

 thisthis..onUrlChange onUrlChange == functionfunction((fnfn)) {{2.

 thisthis..urlChange urlChange == fn fn;;3.

 };};4.

 5.

 thisthis..url url == functionfunction()() {{6.

 returnreturn initUrl initUrl;;7.

 };};8.

 9.

 thisthis..defer defer == functionfunction((fnfn,, delay delay)) {{10.

 setTimeout setTimeout((functionfunction()() {{ fn fn();(); },}, delay delay |||| 00););11.

 };};12.

 13.

 thisthis..baseHref baseHref == functionfunction()() {{14.

 returnreturn baseHref baseHref;;15.

 };};16.

 17.

 thisthis..notifyWhenOutstandingRequests notifyWhenOutstandingRequests == angular angular..noopnoop;;18.

}}19.

 20.

varvar browsers browsers == {{21.

 html5 html5:: newnew FakeBrowserFakeBrowser(('http://www.host.com/base/path?a=b#h''http://www.host.com/base/path?a=b#h',, '/base/index.html''/base/index.html'),),22.

 hashbang hashbang:: newnew FakeBrowserFakeBrowser(('http://www.host.com/base/index.html#!/path?a=b#h''http://www.host.com/base/index.html#!/path?a=b#h',, '/base'/base

/index.html'/index.html'))

23.

};};24.

 25.

functionfunction Html5CntlHtml5Cntl(($scope$scope,, $location $location)) {{26.

 $scope $scope..$location $location == $location $location;;27.

}}28.

 29.

functionfunction HashbangCntlHashbangCntl(($scope$scope,, $location $location)) {{30.

 $scope $scope..$location $location == $location $location;;31.

}}32.

 33.

functionfunction initEnv initEnv((namename)) {{34.

 varvar root root == angular angular..elementelement((documentdocument..getElementByIdgetElementById((name name ++ '-mode''-mode'));));35.

 angular angular..bootstrapbootstrap((rootroot,, [[functionfunction(($compileProvider$compileProvider,, $locationProvider $locationProvider,, $provide $provide){){36.

 $locationProvider $locationProvider..html5Modehtml5Mode((truetrue).).hashPrefixhashPrefix(('!''!'););37.

 38.

 $provide $provide..valuevalue(('$browser''$browser',, browsers browsers[[namename]);]);39.

 $provide $provide..valuevalue(('$document''$document',, root root););40.

 $provide $provide..valuevalue(('$sniffer''$sniffer',, {{historyhistory:: name name ==== 'html5''html5'});});41.

 42.

 $compileProvider $compileProvider..directivedirective(('ngAddressBar''ngAddressBar',, functionfunction()() {{43.

 returnreturn functionfunction((scopescope,, elm elm,, attrs attrs)) {{44.

 varvar browser browser == browsers browsers[[attrsattrs..browserbrowser],],45.

 input input == angular angular..elementelement(('<input type="text">''<input type="text">').).valval((browserbrowser..urlurl()),()),46.

 delay delay;;47.

 48.

 input input..bindbind(('keypress keyup keydown''keypress keyup keydown',, functionfunction()() {{49.

 ifif (!(!delaydelay)) {{50.

 delay delay == setTimeout setTimeout((fireUrlChangefireUrlChange,, 250250););51.

 }}52.

 });});53.

 54.

 browser browser..url url == functionfunction((urlurl)) {{55.

 returnreturn input input..valval((urlurl););56.

 };};57.

 58.

 elm elm..appendappend(('Address: ''Address: ').).appendappend((inputinput););59.

 60.

 functionfunction fireUrlChange fireUrlChange()() {{61.

 delay delay == nullnull;;62.

 browser browser..urlChangeurlChange((inputinput..valval());());63.

 }}64.

 };};65.

 });});66.

 }]);}]);67.

 root root..bindbind(('click''click',, functionfunction((ee)) {{68.

 e e..stopPropagationstopPropagation();();69.

 });});70.

}}71.

 72.

initEnvinitEnv(('html5''html5'););73.

initEnvinitEnv(('hashbang''hashbang'););74.

Demo

Page reload navigation
The $location service allows you to change only the URL; it does not allow you to reload the page. When you need to

change the URL and reload the page or navigate to a different page, please use a lower level API,
$window.location.href.

Using $location outside of the scope life-cycle
$location knows about Angular's scope life-cycle. When a URL changes in the browser it updates the $location and

calls $apply so that all $watchers / $observers are notified. When you change the $location inside the $digest phase

everything is ok; $location will propagate this change into browser and will notify all the $watchers / $observers. When

you want to change the $location from outside Angular (for example, through a DOM Event or during testing) - you must

call $apply to propagate the changes.

$location.path() and ! or / prefixes
A path should always begin with forward slash (/); the $location.path() setter will add the forward slash if it is

missing.

Note that the ! prefix in the hashbang mode is not part of $location.path(); it is actually hashPrefix.

When using $location service during testing, you are outside of the angular's scope life-cycle. This means it's your

responsibility to call scope.$apply().

describedescribe(('serviceUnderTest''serviceUnderTest',, functionfunction()() {{1.

 beforeEach beforeEach((modulemodule((functionfunction(($provide$provide)) {{2.

 $provide $provide..factoryfactory(('serviceUnderTest''serviceUnderTest',, functionfunction(($location$location){){3.

 // whatever it does...// whatever it does...4.

 });});5.

 });});6.

 7.

 it it(('should...''should...',, inject inject((functionfunction(($location$location,, $rootScope $rootScope,, serviceUnderTest serviceUnderTest)) {{8.

 $location $location..pathpath(('/new/path''/new/path'););9.

 $rootScope $rootScope..$apply$apply();();10.

 11.

 // test whatever the service should do...// test whatever the service should do...12.

 13.

 }));}));14.

});});15.

In earlier releases of Angular, $location used hashPath or hashSearch to process path and search methods. With

this release, the $location service processes path and search methods and then uses the information it obtains to

compose hashbang URLs (such as http://server.com/#!/path?search=a), when necessary.

Changes to your code

Navigation inside the app Change to

$location.href = value
$location.hash = value
$location.update(value)
$location.updateHash(value)

$location.path(path).search(search)

$location.hashPath = path $location.path(path)

$location.hashSearch = search $location.search(search)

Navigation outside the app Use lower level API

$location.href = value
$location.update(value)

$window.location.href = value

$location[protocol | host | port | path | search] $window.location[protocol | host | port | path | search]

Read access Change to

$location.hashPath $location.path()

$location.hashSearch $location.search()

Navigation inside the app Change to

$location.href
$location.protocol
$location.host
$location.port
$location.hash

$location.absUrl()
$location.protocol()
$location.host()
$location.port()
$location.path() + $location.search()

$location.path
$location.search

$window.location.path
$window.location.search

Two-way binding to $location
The Angular's compiler currently does not support two-way binding for methods (see issue). If you should require two-way
binding to the $location object (using ngModel directive on an input field), you will need to specify an extra model property

(e.g. locationPath) with two watchers which push $location updates in both directions. For example:

<!-- html --><!-- html -->1.

<input<input typetype=="text""text" ng-modelng-model=="locationPath""locationPath" />/>2.

// js - controller// js - controller1.

$scope$scope..$watch$watch(('locationPath''locationPath',, functionfunction((pathpath)) {{2.

 $location $location..pathpath((pathpath););3.

});});4.

 5.

$scope$scope..$watch$watch(('$location.path()''$location.path()',, functionfunction((pathpath)) {{6.

 scope scope..locationPath locationPath == path path;;7.

});});8.

$location API

Developer GuideDeveloper Guide // Creating ServicesCreating Services

While Angular offers several useful services, for any nontrivial application you'll find it useful to write your own custom
services. To do this you begin by registering a service factory function with a module either via the Module#factory api

or directly via the $provide api inside of module config function.

All Angular services participate in dependency injection (DI) by registering themselves with Angular's DI system (injector)
under a name (id) as well as by declaring dependencies which need to be provided for the factory function of the registered

service. The ability to swap dependencies for mocks/stubs/dummies in tests allows for services to be highly testable.

To register a service, you must have a module that this service will be part of. Afterwards, you can register the service with
the module either via the Module api or by using the $provide service in the module configuration function.The following

pseudo-code shows both approaches:

Using the angular.Module api:

varvar myModule myModule == angular angular..modulemodule(('myModule''myModule',, []);[]);1.

myModulemyModule..factoryfactory(('serviceId''serviceId',, functionfunction()() {{2.

 varvar shinyNewServiceInstance shinyNewServiceInstance;;3.

 //factory function body that constructs shinyNewServiceInstance//factory function body that constructs shinyNewServiceInstance4.

 returnreturn shinyNewServiceInstance shinyNewServiceInstance;;5.

});});6.

Using the $provide service:

angularangular..modulemodule(('myModule''myModule',, [],[], functionfunction(($provide$provide)) {{1.

 $provide $provide..factoryfactory(('serviceId''serviceId',, functionfunction()() {{2.

 varvar shinyNewServiceInstance shinyNewServiceInstance;;3.

 //factory function body that constructs shinyNewServiceInstance//factory function body that constructs shinyNewServiceInstance4.

 returnreturn shinyNewServiceInstance shinyNewServiceInstance;;5.

 });});6.

});});7.

Note that you are not registering a service instance, but rather a factory function that will create this instance when called.

Services can not only be depended upon, but can also have their own dependencies. These can be specified as arguments
of the factory function. Read more about dependency injection (DI) in Angular and the use of array notation and the $inject
property to make DI annotation minification-proof.

Following is an example of a very simple service. This service depends on the $window service (which is passed as a

parameter to the factory function) and is just a function. The service simply stores all notifications; after the third one, the
service displays all of the notifications by window alert.

angularangular..modulemodule(('myModule''myModule',, [],[], functionfunction(($provide$provide)) {{1.

 $provide $provide..factoryfactory(('notify''notify',, [['$window''$window',, functionfunction((winwin)) {{2.

 varvar msgs msgs == [];[];3.

 returnreturn functionfunction((msgmsg)) {{4.

 msgs msgs..pushpush((msgmsg););5.

 ifif ((msgsmsgs..length length ==== 33)) {{6.

 win win..alertalert((msgsmsgs..joinjoin(("\n""\n"));));7.

 msgs msgs == [];[];8.

 }}9.

 };};10.

 }]);}]);11.

});});12.

All services in Angular are instantiated lazily. This means that a service will be created only when it is needed for
instantiation of a service or an application component that depends on it. In other words, Angular won't instantiate services
unless they are requested directly or indirectly by the application.

Lastly, it is important to realize that all Angular services are application singletons. This means that there is only one
instance of a given service per injector. Since Angular is lethally allergic to global state, it is possible to create multiple
injectors, each with its own instance of a given service, but that is rarely needed, except in tests where this property is
crucially important.

Related Topics
Understanding Angular Services
Managing Service Dependencies
Injecting Services Into Controllers
Testing Angular Services

Related API
Angular Service API

index.html script.js End to end test

Developer GuideDeveloper Guide // Injecting Services Into ControllersInjecting Services Into Controllers

Using services as dependencies for controllers is very similar to using services as dependencies for another service.

Since JavaScript is a dynamic language, DI can't figure out which services to inject by static types (like in static typed
languages). Therefore, you can specify the service name by using the $inject property, which is an array containing

strings with names of services to be injected. The name must match the corresponding service ID registered with angular.
The order of the service IDs matters: the order of the services in the array will be used when calling the factory function
with injected parameters. The names of parameters in factory function don't matter, but by convention they match the
service IDs, which has added benefits discussed below.

functionfunction myController myController((locloc,, $log $log)) {{1.

thisthis..firstMethod firstMethod == functionfunction()() {{2.

 // use $location service// use $location service3.

 $loc $loc..setHashsetHash();();4.

};};5.

thisthis..secondMethod secondMethod == functionfunction()() {{6.

 // use $log service// use $log service7.

 $log $log..infoinfo(('...''...'););8.

};};9.

}}10.

// which services to inject ?// which services to inject ?11.

myControllermyController..$inject $inject == [['$location''$location',, '$log''$log'];];12.

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="MyServiceModule""MyServiceModule">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="myController""myController">>8.

 <p><p>Let's try this simple notify service, injected into the controller...Let's try this simple notify service, injected into the controller...</p></p>9.

 <input<input ng-initng-init=="message='test'""message='test'" ng-modelng-model=="message""message" >>10.

 <button<button ng-clickng-click=="callNotify(message);""callNotify(message);">>NOTIFYNOTIFY</button></button>11.

 </div></div>12.

 </body></body>13.

</html></html>14.

script.js :

angularangular..1.

 modulemodule(('MyServiceModule''MyServiceModule',, []).[]).2.

 factory factory(('notify''notify',, [['$window''$window',, functionfunction((winwin)) {{3.

 varvar msgs msgs == [];[];4.

 returnreturn functionfunction((msgmsg)) {{5.

index.html script.js

 msgs msgs..pushpush((msgmsg););6.

 ifif ((msgsmsgs..length length ==== 33)) {{7.

 win win..alertalert((msgsmsgs..joinjoin(("\n""\n"));));8.

 msgs msgs == [];[];9.

 }}10.

 };};11.

 }]);}]);12.

 13.

functionfunction myController myController((scopescope,, notifyService notifyService)) {{14.

 scope scope..callNotify callNotify == functionfunction((msgmsg)) {{15.

 notifyService notifyService((msgmsg););16.

 };};17.

}}18.

 19.

myControllermyController..$inject $inject == [['$scope''$scope',,'notify''notify'];];20.

End to end test :

itit(('should test service''should test service',, functionfunction()() {{1.

 expect expect((elementelement((':input[ng\\:model="message"]'':input[ng\\:model="message"]').).valval()).()).toEqualtoEqual(('test''test'););2.

});});3.

Demo

Implicit Dependency Injection
A new feature of Angular DI allows it to determine the dependency from the name of the parameter. Let's rewrite the above
example to show the use of this implicit dependency injection of $window, $scope, and our notify service:

Source

index.html :

<!doctype html><!doctype html>1.

<html<html ng-appng-app=="MyServiceModuleDI""MyServiceModuleDI">>2.

 <head><head>3.

 <script<script srcsrc=="http://code.angularjs.org/1.0.4angular.min.js""http://code.angularjs.org/1.0.4angular.min.js"></script>></script>4.

 <script<script srcsrc=="script.js""script.js"></script>></script>5.

 </head></head>6.

 <body><body>7.

 <div<div ng-controllerng-controller=="myController""myController">>8.

 <p><p>Let's try the notify service, that is implicitly injected into the Let's try the notify service, that is implicitly injected into the

controller...controller...</p></p>

9.

 <input<input ng-initng-init=="message='test'""message='test'" ng-modelng-model=="message""message">>10.

 <button<button ng-clickng-click=="callNotify(message);""callNotify(message);">>NOTIFYNOTIFY</button></button>11.

 </div></div>12.

 </body></body>13.

</html></html>14.

script.js :

angularangular..1.

 modulemodule(('MyServiceModuleDI''MyServiceModuleDI',, []).[]).2.

 factory factory(('notify''notify',, functionfunction(($window$window)) {{3.

 varvar msgs msgs == [];[];4.

 returnreturn functionfunction((msgmsg)) {{5.

 msgs msgs..pushpush((msgmsg););6.

 ifif ((msgsmsgs..length length ==== 33)) {{7.

 $window $window..alertalert((msgsmsgs..joinjoin(("\n""\n"));));8.

 msgs msgs == [];[];9.

 }}10.

 };};11.

 });});12.

 13.

functionfunction myController myController(($scope$scope,, notify notify)) {{14.

 $scope $scope..callNotify callNotify == functionfunction((msgmsg)) {{15.

 notify notify((msgmsg););16.

 };};17.

}}18.

Demo

However, if you plan to minify your code, your variable names will get renamed in which case you will still need to explicitly
specify dependencies with the $inject property.

Related Topics
Understanding Angular Services Creating Angular Services Managing Service Dependencies Testing Angular Services

Related API
Angular Service API

Developer GuideDeveloper Guide // Managing Service DependenciesManaging Service Dependencies

Angular allows services to declare other services as dependencies needed for construction of their instances.

To declare dependencies, you specify them in the factory function signature and annotate the function with the inject
annotations either using by setting the $inject property, as an array of string identifiers or using the array notation.

Optionally the $inject property declaration can be dropped (see "Inferring $inject" but note that that is currently an

experimental feature).

Using the array notation:

functionfunction myModuleCfgFn myModuleCfgFn(($provide$provide)) {{1.

 $provide $provide..factoryfactory(('myService''myService',, [['dep1''dep1',, 'dep2''dep2',, functionfunction((dep1dep1,, dep2 dep2)) {}]);{}]);2.

}}3.

Using the $inject property:

functionfunction myModuleCfgFn myModuleCfgFn(($provide$provide)) {{1.

 varvar myServiceFactory myServiceFactory == functionfunction((dep1dep1,, dep2 dep2)) {};{};2.

 myServiceFactory myServiceFactory..$inject $inject == [['dep1''dep1',, 'dep2''dep2'];];3.

 $provide $provide..factoryfactory(('myService''myService',, myServiceFactory myServiceFactory););4.

}}5.

Using DI inference (incompatible with minifiers):

functionfunction myModuleCfgFn myModuleCfgFn(($provide$provide)) {{1.

 $provide $provide..factoryfactory(('myService''myService',, functionfunction((dep1dep1,, dep2 dep2)) {});{});2.

}}3.

Here is an example of two services, one of which depends on the other and both of which depend on other services that
are provided by the Angular framework:

/**/**1.

 * batchLog service allows for messages to be queued in memory and flushed * batchLog service allows for messages to be queued in memory and flushed2.

 * to the console.log every 50 seconds. * to the console.log every 50 seconds.3.

 * *4.

 * @param {*} message Message to be logged. * @param {*} message Message to be logged.5.

 */ */6.

 functionfunction batchLogModule batchLogModule(($provide$provide){){7.

 $provide $provide..factoryfactory(('batchLog''batchLog',, [['$timeout''$timeout',, 'log''log',, functionfunction(($timeout$timeout,, $log $log)) {{8.

 varvar messageQueue messageQueue == [];[];9.

 10.

 functionfunction log log()() {{11.

 ifif ((messageQueuemessageQueue..lengthlength)) {{12.

 $log $log(('batchLog messages: ''batchLog messages: ',, messageQueue messageQueue););13.

 messageQueue messageQueue == [];[];14.

 }}15.

 $timeout $timeout((loglog,, 5000050000););16.

 }}17.

 18.

 // start periodic checking// start periodic checking19.

 log log();();20.

 21.

 returnreturn functionfunction((messagemessage)) {{22.

 messageQueue messageQueue..pushpush((messagemessage););23.

 }}24.

 }]);}]);25.

 26.

 /**/**27.

 * routeTemplateMonitor monitors each $route change and logs the current * routeTemplateMonitor monitors each $route change and logs the current28.

 * template via the batchLog service. * template via the batchLog service.29.

 */ */30.

 $provide $provide..factoryfactory(('routeTemplateMonitor''routeTemplateMonitor',,31.

 [['$route''$route',, 'batchLog''batchLog',, '$rootScope''$rootScope',,32.

 functionfunction(($route$route,, batchLog batchLog,, $rootScope $rootScope)) {{33.

 $rootScope $rootScope..$on$on(('$routeChangeSuccess''$routeChangeSuccess',, functionfunction()() {{34.

 batchLog batchLog(($route$route..current current ?? $route $route..currentcurrent..templatetemplate :: nullnull););35.

 });});36.

 }]);}]);37.

 }}38.

 39.

 // get the main service to kick of the application// get the main service to kick of the application40.

 angular angular..injectorinjector([([batchLogModulebatchLogModule]).]).getget(('routeTemplateMonitor''routeTemplateMonitor'););41.

Things to notice in this example:

The batchLog service depends on the built-in $timeout and $log services, and allows messages to be logged into

the console.log in batches.

The routeTemplateMonitor service depends on the built-in $route service as well as our custom batchLog

service.
Both of our services use the factory function signature and array notation for inject annotations to declare their
dependencies. It is important that the order of the string identifiers in the array is the same as the order of argument
names in the signature of the factory function. Unless the dependencies are inferred from the function signature, it is
this array with IDs and their order that the injector uses to determine which services and in which order to inject.

Related Topics
Understanding Angular Services
Creating Angular Services
Injecting Services Into Controllers
Testing Angular Services

Related API
Angular Service API
Angular Injector API

Developer GuideDeveloper Guide // Testing Angular ServicesTesting Angular Services

The following is a unit test for the 'notify' service in the 'Dependencies' example in Creating Angular Services. The unit test
example uses Jasmine spy (mock) instead of a real browser alert.

varvar mock mock,, notify notify;;1.

 2.

beforeEachbeforeEach((functionfunction()() {{3.

 mock mock == {{alertalert:: jasmine jasmine..createSpycreateSpy()};()};4.

 5.

 modulemodule((functionfunction(($provide$provide)) {{6.

 $provide $provide..valuevalue(('$window''$window',, mock mock););7.

 });});8.

 9.

 inject inject((functionfunction(($injector$injector)) {{10.

 notify notify == $injector $injector..getget(('notify''notify'););11.

 });});12.

});});13.

 14.

itit(('should not alert first two notifications''should not alert first two notifications',, functionfunction()() {{15.

 notify notify(('one''one'););16.

 notify notify(('two''two'););17.

 18.

 expect expect((mockmock..alertalert).).notnot..toHaveBeenCalledtoHaveBeenCalled();();19.

});});20.

 21.

itit(('should alert all after third notification''should alert all after third notification',, functionfunction()() {{22.

 notify notify(('one''one'););23.

 notify notify(('two''two'););24.

 notify notify(('three''three'););25.

 26.

 expect expect((mockmock..alertalert).).toHaveBeenCalledWithtoHaveBeenCalledWith(("one\ntwo\nthree""one\ntwo\nthree"););27.

});});28.

 29.

itit(('should clear messages after alert''should clear messages after alert',, functionfunction()() {{30.

 notify notify(('one''one'););31.

 notify notify(('two''two'););32.

 notify notify(('third''third'););33.

 notify notify(('more''more'););34.

 notify notify(('two''two'););35.

 notify notify(('third''third'););36.

 37.

 expect expect((mockmock..alertalert..callCountcallCount).).toEqualtoEqual((22););38.

 expect expect((mockmock..alertalert..mostRecentCallmostRecentCall..argsargs).).toEqualtoEqual([(["more\ntwo\nthird""more\ntwo\nthird"]);]);39.

});});40.

Related Topics
Understanding Angular Services
Creating Angular Services
Managing Service Dependencies
Injecting Services Into Controllers

Related API
Angular Service API

Developer GuideDeveloper Guide // Understanding Angular ServicesUnderstanding Angular Services

Angular services are singletons that carry out specific tasks common to web apps, such as the $http service that

provides low level access to the browser's XMLHttpRequest object.

To use an Angular service, you identify it as a dependency for the dependent (a controller, or another service) that depends
on the service. Angular's dependency injection subsystem takes care of the rest. The Angular injector subsystem is in
charge of service instantiation, resolution of dependencies, and provision of dependencies to factory functions as
requested.

Angular injects dependencies using "constructor" injection (the service is passed in via a factory function). Because
JavaScript is a dynamically typed language, Angular's dependency injection subsystem cannot use static types to identify
service dependencies. For this reason a dependent must explicitly define its dependencies by using the $inject property.

For example:

The Angular web framework provides a set of services for common operations. Like other core Angular variables and
identifiers, the built-in services always start with $ (such as $http mentioned above). You can also create your own

custom services.

Related Topics
About Angular Dependency Injection
Creating Angular Services
Managing Service Dependencies
Testing Angular Services

Related API
Angular Service API
Injector API

Developer GuideDeveloper Guide // dev_guidedev_guide // unit-testingunit-testing

JavaScript is a dynamically typed language which comes with great power of expression, but it also come with almost
no-help from the compiler. For this reason we feel very strongly that any code written in JavaScript needs to come with a
strong set of tests. We have built many features into Angular which makes testing your Angular applications easy. So there
is no excuse for not testing.

Unit testing as the name implies is about testing individual units of code. Unit tests try to answer questions such as "Did I
think about the logic correctly?" or "Does the sort function order the list in the right order?"

In order to answer such question it is very important that we can isolate the unit of code under test. That is because when
we are testing the sort function we don't want to be forced into creating related pieces such as the DOM elements, or
making any XHR calls in getting the data to sort.

While this may seem obvious it usually is very difficult to be able to call an individual function on a typical project. The
reason is that the developers often mix concerns, and they end up with a piece of code which does everything. It reads the
data from XHR, it sorts it and then it manipulates the DOM.

With Angular we try to make it easy for you to do the right thing, and so we provide dependency injection for your XHR
(which you can mock out) and we created abstraction which allow you to sort your model without having to resort to
manipulating the DOM. So that in the end, it is easy to write a sort function which sorts some data, so that your test can
create a data set, apply the function, and assert that the resulting model is in the correct order. The test does not have to
wait for XHR, or create the right kind of DOM, or assert that your function has mutated the DOM in the right way.

With great power comes great responsibility
Angular is written with testability in mind, but it still requires that you do the right thing. We tried to make the right thing
easy, but Angular is not magic, which means if you don't follow these guidelines you may very well end up with an
untestable application.

Dependency Injection
There are several ways in which you can get a hold of a dependency: 1. You could create it using the new operator. 2. You

could look for it in a well known place, also known as global singleton. 3. You could ask a registry (also known as service
registry) for it. (But how do you get a hold of the registry? Most likely by looking it up in a well known place. See #2) 4. You
could expect that it be handed to you.

Out of the four options in the list above, only the last one is testable. Let's look at why:

Using the new operator
While there is nothing wrong with the new operator fundamentally the issue is that calling a new on a constructor

permanently binds the call site to the type. For example lets say that we are trying to instantiate an XHR so that we can get

some data from the server.

functionfunction MyClassMyClass()() {{1.

 thisthis..doWork doWork == functionfunction()() {{2.

 varvar xhr xhr == newnew XHR XHR();();3.

 xhr xhr..openopen((methodmethod,, url url,, truetrue););4.

 xhr xhr..onreadystatechange onreadystatechange == functionfunction()() {...}{...}5.

 xhr xhr..sendsend();();6.

 }}7.

}}8.

The issue becomes that in tests, we would very much like to instantiate a MockXHR which would allow us to return fake

data and simulate network failures. By calling new XHR() we are permanently bound to the actual XHR, and there is no

good way to replace it. Yes there is monkey patching. That is a bad idea for many reasons which are outside the scope of
this document.

The class above is hard to test since we have to resort to monkey patching:

varvar oldXHR oldXHR == XHR XHR;;1.

XHR XHR == functionfunction MockXHRMockXHR()() {};{};2.

varvar myClass myClass == newnew MyClassMyClass();();3.

myClassmyClass..doWorkdoWork();();4.

// assert that MockXHR got called with the right arguments// assert that MockXHR got called with the right arguments5.

XHR XHR == oldXHR oldXHR;; // if you forget this bad things will happen// if you forget this bad things will happen6.

Global look-up:
Another way to approach the problem is to look for the service in a well known location.

functionfunction MyClassMyClass()() {{1.

 thisthis..doWork doWork == functionfunction()() {{2.

 globalglobal..xhrxhr({({3.

 method method::'...''...',,4.

 url url::'...''...',,5.

 complete complete::functionfunction((responseresponse){){ }}6.

 })})7.

 }}8.

}}9.

While no new instance of the dependency is being created, it is fundamentally the same as new, in that there is no good

way to intercept the call to global.xhr for testing purposes, other then through monkey patching. The basic issue for

testing is that global variable needs to be mutated in order to replace it with call to a mock method. For further explanation
why this is bad see: Brittle Global State & Singletons

The class above is hard to test since we have to change global state:

varvar oldXHR oldXHR == globalglobal..xhrxhr;;1.

globalglobal..xhr xhr == functionfunction mockXHR mockXHR()() {};{};2.

varvar myClass myClass == newnew MyClassMyClass();();3.

myClassmyClass..doWorkdoWork();();4.

// assert that mockXHR got called with the right arguments// assert that mockXHR got called with the right arguments5.

globalglobal..xhr xhr == oldXHR oldXHR;; // if you forget this bad things will happen// if you forget this bad things will happen6.

Service Registry:
It may seem as that this can be solved by having a registry for all of the services, and then having the tests replace the
services as needed.

functionfunction MyClassMyClass()() {{1.

 varvar serviceRegistry serviceRegistry == ????;????;2.

 thisthis..doWork doWork == functionfunction()() {{3.

 varvar xhr xhr == serviceRegistry serviceRegistry..getget(('xhr''xhr'););4.

 xhr xhr({({5.

 method method::'...''...',,6.

 url url::'...''...',,7.

 complete complete::functionfunction((responseresponse){){ }}8.

 })})9.

}}10.

However, where does the serviceRegistry come from? if it is: * new-ed up, the the test has no chance to reset the services

for testing * global look-up, then the service returned is global as well (but resetting is easier, since there is only one global
variable to be reset).

The class above is hard to test since we have to change global state:

varvar oldServiceLocator oldServiceLocator == globalglobal..serviceLocatorserviceLocator;;1.

globalglobal..serviceLocatorserviceLocator..setset(('xhr''xhr',, functionfunction mockXHR mockXHR()() {});{});2.

varvar myClass myClass == newnew MyClassMyClass();();3.

myClassmyClass..doWorkdoWork();();4.

// assert that mockXHR got called with the right arguments// assert that mockXHR got called with the right arguments5.

globalglobal..serviceLocator serviceLocator == oldServiceLocator oldServiceLocator;; // if you forget this bad things will happen// if you forget this bad things will happen6.

Passing in Dependencies:
Lastly the dependency can be passed in.

functionfunction MyClassMyClass((xhrxhr)) {{1.

 thisthis..doWork doWork == functionfunction()() {{2.

 xhr xhr({({3.

 method method::'...''...',,4.

 url url::'...''...',,5.

 complete complete::functionfunction((responseresponse){){ }}6.

 })})7.

}}8.

This is the preferred way since the code makes no assumptions as to where the xhr comes from, rather that whoever

created the class was responsible for passing it in. Since the creator of the class should be different code than the user of
the class, it separates the responsibility of creation from the logic, and that is what dependency-injection is in a nutshell.

The class above is very testable, since in the test we can write:

functionfunction xhrMock xhrMock((argsargs)) {...}{...}1.

varvar myClass myClass == newnew MyClassMyClass((xhrMockxhrMock););2.

myClassmyClass..doWorkdoWork();();3.

// assert that xhrMock got called with the right arguments// assert that xhrMock got called with the right arguments4.

Notice that no global variables were harmed in the writing of this test.

Angular comes with dependency injection built in which makes the right thing easy to do, but you still need to do it if you
wish to take advantage of the testability story.

Controllers
What makes each application unique is its logic, which is what we would like to test. If the logic for your application is mixed
in with DOM manipulation, it will be hard to test as in the example below:

functionfunction PasswordCtrlPasswordCtrl()() {{1.

 // get references to DOM elements// get references to DOM elements2.

 varvar msg msg == $ $(('.ex1 span''.ex1 span'););3.

 varvar input input == $ $(('.ex1 input''.ex1 input'););4.

 varvar strength strength;;5.

 6.

 thisthis..grade grade == functionfunction()() {{7.

 msg msg..removeClassremoveClass((strengthstrength););8.

 varvar pwd pwd == input input..valval();();9.

 password password..texttext((pwdpwd););10.

 ifif ((pwdpwd..length length >> 88)) {{11.

 strength strength == 'strong''strong';;12.

 }} elseelse ifif ((pwdpwd..length length >> 33)) {{13.

 strength strength == 'medium''medium';;14.

 }} elseelse {{15.

 strength strength == 'weak''weak';;16.

 }}17.

 msg msg18.

 ..addClassaddClass((strengthstrength))19.

 ..texttext((strengthstrength););20.

 }}21.

}}22.

The code above is problematic from a testability point of view, since it requires your test to have the right kind of DOM
present when the code executes. The test would look like this:

varvar input input == $ $(('<input type="text"/>''<input type="text"/>'););1.

varvar span span == $ $((''''););2.

$$(('body''body').).htmlhtml(('<div class="ex1">''<div class="ex1">'))3.

 ..findfind(('div''div'))4.

 ..appendappend((inputinput))5.

 ..appendappend((spanspan););6.

varvar pc pc == newnew PasswordCtrlPasswordCtrl();();7.

inputinput..valval(('abc''abc'););8.

pcpc..gradegrade();();9.

expectexpect((spanspan..texttext()).()).toEqualtoEqual(('weak''weak'););10.

$$(('body''body').).htmlhtml((''''););11.

In angular the controllers are strictly separated from the DOM manipulation logic which results in a much easier testability
story as can be seen in this example:

functionfunction PasswordCtrlPasswordCtrl(($scope$scope)) {{1.

 $scope $scope..password password == '''';;2.

 $scope $scope..grade grade == functionfunction()() {{3.

 varvar size size == $scope $scope..passwordpassword..lengthlength;;4.

 ifif ((size size >> 88)) {{5.

 $scope $scope..strength strength == 'strong''strong';;6.

 }} elseelse ifif ((size size >> 33)) {{7.

 $scope $scope..strength strength == 'medium''medium';;8.

 }} elseelse {{9.

 $scope $scope..strength strength == 'weak''weak';;10.

 }}11.

 };};12.

}}13.

and the test is straight forward

varvar pc pc == newnew PasswordCtrlPasswordCtrl();();1.

pcpc..passwordpassword(('abc''abc'););2.

pcpc..gradegrade();();3.

expectexpect((pcpc..strengthstrength).).toEqualtoEqual(('weak''weak'););4.

Notice that the test is not only much shorter but it is easier to follow what is going on. We say that such a test tells a story,
rather then asserting random bits which don't seem to be related.

Filters
Filters are functions which transform the data into user readable format. They are important because they remove the

formatting responsibility from the application logic, further simplifying the application logic.

myModulemyModule..filterfilter(('length''length',, functionfunction()() {{1.

 returnreturn functionfunction((texttext){){2.

 returnreturn ((''''+(+(texttext||||'''')).)).lengthlength;;3.

 }}4.

});});5.

 6.

varvar length length == $filter $filter(('length''length'););7.

expectexpect((lengthlength((nullnull)).)).toEqualtoEqual((00););8.

expectexpect((lengthlength(('abc''abc')).)).toEqualtoEqual((33););9.

Directives
Directives in angular are responsible for updating the DOM when the state of the model changes.

Mocks
oue

Global State Isolation
oue

uo

JavaScriptTestDriver
ou

Jasmine
ou

Sample project
uoe

	AngularJS_ Overview
	AngularJS_ Bootstrap
	AngularJS_ HTML Compiler
	AngularJS_ Conceptual Overview
	AngularJS_ Directives
	AngularJS_ Expressions
	AngularJS_ Forms
	AngularJS_ i18n and l10n
	AngularJS_ Internet Explorer Compatibility
	AngularJS_ Introduction
	AngularJS_ Modules
	AngularJS_ Scopes
	AngularJS_ Dependency Injection
	AngularJS_ About MVC in Angular
	AngularJS_ Understanding the Model Component
	AngularJS_ Understanding the Controller Component
	AngularJS_ Understanding the View Component
	AngularJS_ E2E Testing
	AngularJS_ Understanding Angular Templates
	AngularJS_ Working With CSS in Angular
	AngularJS_ Data Binding in Angular
	AngularJS_ Understanding Angular Filters
	AngularJS_ Creating Angular Filters
	AngularJS_ Using Angular Filters
	AngularJS_ Angular Services
	AngularJS_ Using $location
	AngularJS_ Creating Services
	AngularJS_ Injecting Services Into Controllers
	AngularJS_ Managing Service Dependencies
	AngularJS_ Testing Angular Services
	AngularJS_ Understanding Angular Services
	AngularJS_ Unit Testing

