THE SHAPE OF THINGS TO COME:
A WINDOW INTO DESERT TORTOISE CONNECTIVITY IN AN INCREASINGLY URBAN WORLD

Kirsten Dutcher, Jill Heaton, & Ken Nussear
2015-UNR-1580A-Desert Tortoise Connectivity Modeling
Project Purpose & Status

- Understand the effects of corridors & quantify connectivity in disturbed habitat
- Final report & deliverable submitted

Support provided by Clark County DCP, funded by SNPLMA, to further the Clark County MSHCP
Genetic Connectivity

- Panmixia
- Isolation-by-Distance
- Isolation
Gene Flow, Barriers, & Corridors

Gene Flow

Gene Flow
Main Connectivity Takeaways

- Effect of population density & addition of corridors
- Impacts of habitat disturbance on population size & gene flow
- Indicators of corridor success/failure
DISTURBANCE & LAG TIMES

Neutral

Clark County

habitat resistance

Current

Future

Time
1 generation

200 generations
Forward-in-Time Simulation Modeling

- Genotypes - 20 microsatellite loci
- Time - 200 tortoise generations
- Resistance surface - 0 to 1
Proof-of-Concept Models

Neutral

Absolute Barrier

Permeable Barrier

Population densities: low (3/km²), moderate (14/km²)
Population & Genetic Analyses

Population Size

Genetic Diversity

Dutcher et al. in review
Hagerty 2008

$H_o \sim 0.8$

Genetic Structure

$ex: K = 2$

Time series

Generation 200
Population Size & Genetic Diversity

Moderate Density
(14/km²)

Low Density
(3/km²)
Population Genetic Structure

- **Neutral**
 - Moderate: $K = 1$ (14/km²)
 - Low: $K = 3$ (3/km²)

- **Absolute Barrier**
 - $K = 2$

- **Permeable Barrier**
 - $K = 2$
TAKEAWAY:

Effect of Population Density & Addition of Corridors

- The addition of corridors improves connectivity.
- Higher densities improves connectivity.
- 1 migrant/generation → former gene flow.
Clark County Modeled Landscape Locations

- **Locations:** 17
- **Area of each:** 525 to 625 km²
- **Density:** 1 to 24/km²
RESISTANCE SURFACES

Adapted from Nussear et al. 2009

Clark County

Neutral Current Future

habitats resistance
Bounding the Landscape

Jean/Roach

Laughlin

Jean/Roach
RESISTANCE SURFACES

Laughlin

Jean/Roach

Current

Future
Population Size & Genetic Diversity

Laughlin

Jean/Roach
Population Genetic Structure

- **Neutral**
 - Laughlin: $K = 2$
 - Jean/Roach: $K = 2$

- **Current**
 - Laughlin: $K = 3$
 - Jean/Roach: $K = 2$

- **Future**
 - Laughlin: $K = 3$
 - Jean/Roach: $K = 3$
Takeaway: Impact of Disturbance on Population Size & Gene Flow

- Disturbance reduces population size, diversity, & connectivity
- Pay attention to population size

Photo courtesy of USGS
Corridor Success Index (CSI)

- **Neutral Landscape**: $F_{ST} = 0.002$
- **Absolute Barrier**: $F_{ST} = 0.014$

The CSI index is used to measure the success of corridors in facilitating gene flow. A lower F_{ST} value indicates better connectivity, with Neutral Landscape showing a lower value compared to Absolute Barrier, suggesting better genetic connectivity in the former scenario.
High Levels of Genetic Connectivity ($\text{CSI} = 0.7-1$)

Current
- Laughlin
- Eldorado Valley
- Trout Canyon
- Sandy Valley
- Searchlight
- Indian Springs
- Las Vegas North
- Coyote Springs
- Moapa Valley

Future
- Laughlin
- Eldorado Valley
- Trout Canyon
- Searchlight
- Indian Springs
- Moapa Valley

Habitat resistance
Intermediate Connectivity (CSI = 0.35-0.69)

Current
- BCCE
- Dry Lake
- Mesquite

Future
- Dry Lake
- Mesquite
- Coyote Springs
- Sandy Valley
Low/No Connectivity (CSI < 0.35)

Current
- Ivanpah Valley
- Las Vegas West
- Las Vegas East
- Red Rock
- Jean/Roach

Future
- Ivanpah Valley
- Las Vegas West
- Las Vegas East
- Red Rock
- Jean/Roach
- BCCE
- Moapa Valley
- Las Vegas North

Habitat resistance
Landscape Metrics

- Number of habitat patches – measure of fragmentation
- Percent habitat area – measure of habitat loss
Fragmentation & Connectivity

Increasing Fragmentation

- Loss of Individuals
- Loss of Genetic Diversity
- Increase in Genetic Differentiation

Number of Suitable Habitat Patches
Habitat Loss & Connectivity

- Loss of Individuals
- Loss of Genetic Diversity
- Increase in Genetic Differentiation

Graphs showing the relationship between habitat loss and genetic metrics:

- Loss of Individuals vs. % Suitable Habitat Area
- Loss of Genetic Diversity vs. % Suitable Habitat Area
- Increase in Genetic Differentiation vs. % Suitable Habitat Area

Increasing Habitat
Habitat Loss & Fragmentation
Takeaway: Indicators of Corridor Success/Failure

- More habitat + less fragmentation = more connectivity
- Landscape dependent individual management units

Photo courtesy of USGS
Management Recommendations

- Low/no connectivity landscapes – prioritize for restoration
- Intermediate connectivity – strategically restore connectivity
- High connectivity – maintain existing habitat
Thank you

Scott Cambrin
Kimberley Jenkins
Lee Bice
Todd Esque
Kristina Drake
Felicia Chen
Ben Gottsacker
Amanda McDonald
Sara Murray
Jordan Swart
Marjorie Matocq
Anna Mitelberg
Amy Vandergast
Population & Genetic Analyses

Population Size

- $N = 10$

Genetic Diversity

- $H_0 \sim 0.8$

Genetic Differentiation

- $F_{st} \sim 0$
- $F_{st} > 0$

Genetic Structure

- $K = 2$

Time series

Generation 200
Population, Heterozygosity, & Differentiation

Moderate Density

Low Density
Population, Heterozygosity, & Differentiation

Laughlin

Jean/Roach