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Study Area

The study area used for modeling was incorporated from earlier modeling efforts (Nussear
and Simandle 2019), and consisted of a 50km buffer area around the boundary for Clark County
NV. The projection used was a NAD83, UTM Zone 11N projection (corresponding to the EPSG
26911). Raster resolution for all input and output layers was set at a 250 m grid resolution. All
environmental data, and point data were cropped, masked and re-sampled to this resolution and
extent. Envrionmental Layers used include those from Nussear and Simandle 2019, SWECO 2018.
These are given in Table 1 below.

Table 1. Environmental covariate names and their source.

Name Source
Ave Max Temp Average of the maximum monthly temperatures for a 30-year normal period
between 1988 and 2018 calculated from monthly PRISM data at 800m resolution
and downscaled to a 250 m resolution with bicubic spline interpolation using gdal-
warp in python.
Ave Min Temp Average of the maximum monthly temperatures for a 30-year normal period

between 1988 and 2018 calculated from monthly PRISM data at 800m resolution
and downscaled to a 250 m resolution with bicubic spline interpolation using gdal-
warp in python.

Clay

Downloaded from the Soil Grids 250m project. Hengl et al. 2017

Coarse fragments

Downloaded from the Soil Grids 250m project. Hengl et al. 2017

CV Max Temp Coefficient of Variation of the maximum monthly temperatures for a 30-year
normal period between 1988 and 2018 calculated from monthly PRISM data at
800m resolution and downscaled to a 250 m resolution with bicubic spline
interpolation using gdal-warp in python.

CV Min Temp Coefficient of Variation of the maximum monthly temperatures for a 30-year
normal period between 1988 and 2018 calculated from monthly PRISM data at
800m resolution and downscaled to a 250 m resolution with bicubic spline
interpolation using gdal-warp in python.

Dist to cliffs Distance of Cliffs - from Inman et al. 2014

Extreme Max Extreme Maximum of monthly temperatures for a 30-year normal period between

Temp 1988 and 2018 calculated from monthly PRISM data at 800m resolution and

downscaled to a 250 m resolution with bicubic spline interpolation using gdal-warp
in python.

Extreme Min Temp

Extreme Minimum of monthly temperatures for a 30-year normal period between
1988 and 2018 calculated from monthly PRISM data at 800m resolution and
downscaled to a 250 m resolution with bicubic spline interpolation using gdal-warp

in python.
Flow Accum Inman et al. 2014
NDVI Amplitude USGS Phenology network - https://www.usgs.gov/land-

resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-
science_center_objects=0#qt-science_center_objects

NDVI Length of
Season

USGS Phenology network - https://www.usgs.gov/land-
resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-
science_center_objects=0#qt-science_center_objects

NDVI Max USGS Phenology network - https://www.usgs.gov/land-
resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-
science_center_objects=0#qt-science_center_objects

Sand Downloaded from the Soil Grids 250m project. Hengl et al. 2017




Name

Source

Silt

Downloaded from the Soil Grids 250m project. Hengl et al. 2017

Slope

Calculated from USGS National Map. https://www.usgs.gov/core-science-
systems/national-geospatial-program/national-map

Start of Season
(day)

USGS Phenology network - https://www.usgs.gov/land-
resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-
science_center_objects=0#qt-science_center_objects

Winter Precip

Average of the cumulative annual winter precipitation (October - March) for a 30-
year normal period between 1988 and 2018 calculated from monthly PRISM data at
800m resolution and downscaled to a 250 m resolution with bicubic spline
interpolation using gdal-warp in python.

CV Winter Precip

Coefficient of Variation for the cumulative annual winter precipitation (October -
March) for a 30-year normal period between 1988 and 2018 calculated from
monthly PRISM data at 800m resolution and downscaled to a 250 m resolution with
bicubic spline interpolation using gdal-warp in python.

Surface roughness

Inman et al. 2014

Average Spring
Max Temp

Average of the maximum monthly temperatures for March - May for a 30-year
normal period between 1988 and 2018 calculated from monthly PRISM data at
800m resolution and downscaled to a 250 m resolution with bicubic spline
interpolation using gdal-warp in python.

CV Average Spring
Max Temp

Coefficient of Variation for the maximum monthly temperatures for a 30-year
normal period between 1988 and 2018 calculated from monthly PRISM data at
800m resolution and downscaled to a 250 m resolution with bicubic spline
interpolation using gdal-warp in python.

Percent washes

Calculated from USGS National Map. https://www.usgs.gov/core-science-
systems/national-geospatial-program/national-map

Absolute depth to
bedrock

Downloaded from the Soil Grids 250m project. Hengl et al. 2017

Species locality data

Species locality data were obtained from our earlier modeling efforts (Nussear and Simandle

2019, SWECO 2018), and were updated from current searches at INaturalist using research grade
observations without obscured locality data, as well as with data updates from Clark County NV
which were supplied to us by John Ellis in the form of 1 excel file (Clark County Species
Observations.xlsx), and 1 geodatabase (CC_Data_Deliverable.gdb) that we received on August
23.

Modeling Methods

Modeling updates were conducted using an ensemble modeling approach that incorporated
four different algorithms commonly used in species distribution modeling. These were:
generalized additive models (GAM; using the “mgcv” method Wood 2006), random forests (RF;
implemented in the R package “randomForest,” Liaw and Wiener 2002), MaxEnt (version 3..4.1,
Phillips et al. 2006) implemented in the Maxnet algorithm in R (maxnet v 0.1.4, Phillips 2021) and
Generalized boosted regression models (GBM) implemented in the ‘gbm’ package (version
2.1.8.1, Greenwell et al 2022). All models were executed using custom species distribution
modeling code developed by Nussear for an upcoming package for R, (Nussear et al in Prep
2023). The use of multi-algorithm ensembles renders predictions less susceptible to the biases,
assumptions, or limitations of any individual algorithm, while broadening the types of



environmental response functions that can be identified (Araujo and New 2006). Moreover,
empirical evaluations have found GAM, RF, MaxEnt, and GBM to be consistently strong
performers among habitat distribution modeling algorithms (Franklin 2010). All modeling was
conducted in R version 4.3 (R Core Team 2023).

True absence points were not available for any of the study species at this time. For this
reason, all models were fit using randomly generated background points (pseudo-absences).
Random selections of background points are considered a reliable method for regression
techniques, and are a widely used method (Wisz and Guisan 2009; Barbet-Massin et al. 2012).
Background points were randomly drawn from a bioclimatic envelope model executed in the
bioclim algorithm from the dismo package (v 1.3, Hijmans et al. 2023) selecting points with the
same frequency of occurrences (Barbet-Massin et al. 2012) from areas with a model value below
0.3.

To keep models interpretable and to improve their generalization across the study area, we
also did not include interaction terms. Because presence points tended to be spatially
aggregated, which can lead to substantial bias in model predictions, we first rasterized the
presence points to the modeling resolution (i.e., such that only one presence point could occur
within each grid cell) and subsequently applied a geographically-weighted resampling procedure
in which a maximum of three observations could be sampled from cells on a uniform grid at a
spatial resolution 4 times larger than the modeling extent (e.g., 1 km? for a 250 m?). This
systematic grid sampling approach for spatial thinning of presence points can be effective at
reducing spatial bias under a variety of conditions (Fourcade et al. 2014). To further reduce bias
in our predictions, we used cross-validations to fit and evaluate all habitat models. In this
process, each algorithm was fit across 20 samples of randomly selected, spatially thinned
presence points, with a 20% random sample (without replacement) withheld for model
evaluation at each iteration (i.e., 80 % of presence points were used in model fitting, and 20% in
model evaluation). Background points were also randomly drawn for each cross-validation.

This modeling effort included a vegetation layer that was provided in a shapefile format
(Vegetation_USNVC_Divisions_20240423_LAME_CC.shp),consisting of plant association/alliance
group polygons, and was to be evaluated for inclusion in the modeling efforts. This created
changes in our modeling approach, and the implementation of additional modeling techniques.
First the vegetation layer was a smaller extent than the buffered study area for the initial
models, restricted to the Clark County boundary, with sections missing in the northwestern
extent on the Nevada National Test Site, and a few smaller patches, where the Lake Mead area
was included in the final V3 model versions. In addition the data are categorical with 16 levels of
vegetation associations (Table 3). Given the relatively narrow distribution of some species with
respect to vegetation communities this can create difficulties modeling, as all of the categories
need to be represented in the presence and absence data. To achieve this requirement we
augmented absence data with random samples stratified within each of the strata, adding up to
5 points per strata - and treated them as pseudo absences. For these modeling efforts the GAM
algorithm was not used as there were problems with model convergence, and the MaxEnt
models all converged on either all present, or all absent outputs, and were not used for
ensemble modeling. Thus the final models including the vegetation layer relied on the RF and
GBM algorithms .

Metrics of model prediction accuracy were calculated based on the evaluation data for each
of the cross-validation runs, and subsequently averaged across runs. Performance metrics
included several threshold-independent measures: AUC (the area under the receiver operating
characteristic; Fielding and Bell 1997), the Boyce Index (BI; Boyce et al. 2002; Hirzel et al. 2006),
and the True Skill Statistic (TSS; Allouche et al. 2006). TSS takes into account both omission and
commission errors and is insensitive to data prevalence (Allouche et al. 2006).



Habitat distribution models vary in their ability to effectively discriminate different classes
of habitat along the full range of habitat suitability values (0 - 1; Hirzel et al. 2006). To evaluate
this property, we calculated the continuous Predicted / Expected (P/E) ratio curves based on the
BI (Hirzel et al. 2006) using the ecospat package (v 3.0) in R. These curves reflect how well each
model deviates from random expectation, and inform the interpretation of biologically
meaningful suitability categories by indicating the effective resolution of suitability scores for
each model (i.e., the model’s ability to distinguish different classes of suitability; Hirzel et al.
2006).

To generate predictive layers of habitat suitability for each species (Table 2), we selected
the top candidate models from each algorithm, based upon model performance metrics across
cross-validation runs where the AUC was greater than the mean of all models. Ensemble
predictions for individual algorithms were generated by taking the weighted average among
candidate models for all algorithm types (i.e., one ensemble prediction each for GAM, RF, GBM,
and MaxEnt models), with the weights determined by TSS scores for each of the included
models. Layers representing the standard error of the overall ensemble habitat suitability layer
were calculated as the standard deviation in model predictions across all candidate models,
divided by the square root of the number of candidate models considered).

Quantitative model interpretation

To facilitate biological interpretations of the ensemble models, we410 calculated the
relative importance of environmental predictors across candidate models for each algorithm. To
illustrate the shape of the relationships between predicted habitat suitability and important
environmental covariates, we derived partial response curves for the top 4 environmental
parameters for each of the algorithms. Partial response curves show the predicted habitat
suitability across a single covariate’s range of values, while holding all other covariates at their
mean value (e.g., Elith et al. 2005). To indicate the overall distribution of covariate values across
the study region, we overlaid the response curve plots with histograms representing each
environmental covariate. These histograms were calculated from the combined presence and
pseudo absence locations.

Habitat Models

Models with and without the new vegetation layer were completed for 17 species - which are
given in the table below (Table 2).

Table 2. Species “codes”, common names, and scientific names for species covered in this
modeling effort.

SPECIES
COMMON NAME SCIENTIFIC NAME

CODE

ANLE Sticky Ringstem Anulocaulis leiosolenus

AQCH Golden eagle Aquila chrysaetos

ARCA Las Vegas Bearpoppy Arctomecon californica

ASGETR | Three Corner Milkvetch Astragalus geyeri var. triquetrus

ATCU Burrowing Owl Athene cunicularia




SPECIES
COMMON NAME

SCIENTIFIC NAME

CODE

CHPE Desert Pocket Mouse Chaetodipus penicillatus
COCH | Gilded Flicker Colaptes chrysoides

ENAR Silverleaf Sunray Enceliopsis argophylla
ERBI Pahrump Valley Buckwheat Eriogonum bifurcatum
ERCO | Las Vegas Buckwheat Eriogonum corymbosum var. nilesii
ERVI Sticky Buckwheat Eriogonum viscidulum
GOAG | Mojave Desert tortoise Gopherus agassizii

LALU Loggerhead Shrike Lanius ludovicianu

PEAL White-margined Beardtongue Penstemon albomarginatus
TOBE Bendire’s thrasher Toxostoma bendirei

TOLE Le Conte’s thrasher Toxostoma lecontei

VIBE Loggerhead shrike Lanius ludovicianus

Table 3. Vegetation layer Groups, “Tmp Names” and Rasterized values used in modeling for the

vegetation included models.

Raster GROUP “Tmp Name”
Value

0 Californian Forest & Woodland Californian Broadleaf Forest and Woodland

1 Developed Land Use and Development

2 North American Warm Desert Scrub & Grassland North American Warm Desert Ruderal Grassland

. Inter-Mountain Basins Subalpine Limber-Bristlecone Pine

3 Rocky Mountain Forest & Woodland Woodland

4 Southwestern North American Warm Desert | North American Warm Desert Riparian Low Bosque and
Freshwater Marsh & Bosque Shrubland

5 Urban Interface Mojave Desert Scrub Urban Interface Mojave Desert Scrub

(] Vacant Transisitional Lands

7 Vacant or Cleared Land Use and Development

8 Water Canals and Other Man-made Watercourses

9 Western North American Alpine Tundra North American Desert Alkaline-Saline Marsh and Playa

10 Western North American Cool Semi-Desert Scrub | Great Basin-Intermountain Tall Sagebrush Steppe and
& Grassland Shrubland

11 Western North American Grassland & Shrubland Southern Rocky Mountain Mountain-mahogany - Mixed

Foothill Shrubland
12 Western North American Interior Chaparral Western Madrean Chaparral
13 Western North American Interior Flooded Forest Western Interior_ Riparian Forest and Woodland and Interior
West Ruderal Riparian Forest and Scrub
14 wgzt;:; d gosrgIUbAmerlcan Al e il Colorado Plateau - Great Basin Juniper Open Woodland
15 XX:?;ETNZIP ﬁgaggqﬁrggrzgg rp])grate Freshwater Rocky Mountain Alpine-Montane Wet Meadow

Model outputs and performance tables for each are given below..



ANLE - Sticky Ringstem

Figure 1 - Models for ANLE - with
environmental raster layers only (left) and with the inclusion of the vegetation layer (right).

The Sticky Ringstem model had high overall performance - where AUC, BI, and TSS all had high
values with minimal losses between training and testing data. (Table 4). With the inclusion of
vegetation the model performance appeared high (perhaps too high) (Table 5). The models both
indicated higher habitat values in the Muddy River/Moapa area, and near Lake Mead (where
visible in the vegetation model), but the vegetation influenced model had reduced predicted
habitat in the area west of Las Vegas (Figure 1). This reduction appears to be more closely
aligned with the foot print of the localities used in modeling in this case (Figure 2).
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Figure 2 - Model for ANLE with the inclusion of the vegetation layer showing localities for the
species used for modeling and testing. Note the localities in the Lake Mead area with no
underlying values could not be used in modeling.



Table 4 performance metrics for ANLE. AUC (Area under Curve), Bl - (Boyce Index), TSS (true skill

statistic) were each calculated independently for Training and Testing data, and using all points.
Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 0.98 1 0.98 0.8 0.97 1 0.83
GAM 1 0.95 0.99 0.49 0.48 0.58 1 0.83
RF 1 0.98 1 0.97 0.9 0.96 1 0.83
MX 0.99 0.98 0.99 0.98 0.96 0.99 0.91 0.88
GBM 1 0.93 0.99 0.85 0.57 0.84 1 0.83

Table 5 performance metrics for ANLE with vegetation model. AUC (Area under Curve), Bl -
(Boyce Index), TSS (true skill statistic) were each calculated independently for Training and
Testing data, and using all points.
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Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 1 1 0.87 0.86 0.96 1 0.95
RE 1 1 1 0.93 096 0.97 1 0.95
GBM 1 1 1 0.86 0.85 0.1 1 0.95

Importance of the individual environmental layers indicated different variables among the

0.99
0.99
0.99

different algorithms, highlighting the importance of using the ensemble of multiple algorithms.
The final ensemble model (Figure 1) was composed from weighted models of 12 RF, 12 Maxent,

12 GBM, and 6 GAM models. Slope was the lowest performing variable, and was below 10%

importance in all algorithms (Table 6). Minimum and maximum temperatures, as well as the soil

gypsum content were the variables that had the greatest influence (Table 5).

The models including vegetation (20 RF and 20 GBM) indicated shifts in variable importance

relative to the base models. The GBM, which showed very little importance of the vegetation

layer (Table 7) had the highest importance for Ave Spring Max Temp, and an increase in Soil
Gypsum, which dominated the models. The RF importance showed 2.4% importance for the
vegetation layer, with increased importance of Average Minimum Temperature, Spring
Temperatures, Soil Gypsum, and NDVI Amplitude (Table 7).

Table 6. Relative importance of the input variables used in modeling for ANLE

Variable GAM GBM RF MX
Ave Min Temp 37.6 6.7 16.8 42.7
Ave Spring Max Temp 35.9 27 28.4 5.1
Soil gypsum 5.3 65.5 31.9 25.9
NDVI Amplitude 2 0.7 145 9.8
Silt 10.7 0 4 8.2
Slope 8.4 0 4.3 8.5

Table 7. Relative importance of the input variables used in modeling for ANLE with the vegetation layer.

Variable GBM RF
Ave Min Temp 0 10.6
Ave Spring Max Temp 32.4 27.4
Soil gypsum 61.8 29.2
NDVI Amplitude 5.8 19.2
Silt 0 55
Slope 0 5.8

Veg 0 2.4



Vegetation associated with ANLE

Vegetation Type

I Agricultural & Developed Vegetation

I californian Forest & Woodland

. Developed, Open Space - Low Intensity

I Land Use and Development

B North American Warm Desert Scrub & Grassland

B North American Western Interior Brackish Marsh, Playa & Shrubland

I Rocky Mountain Forest & Woodland

- Southwestern North American Warm Desert Freshwater Marsh & Bosque
W water

Il Western North American Alpine Tundra

[l Western North American Cool Semi-Desert Scrub & Grassland

I Western North American Grassland & Shrubland

. Western North American Interior Chaparral

[ western North American Interior Flooded Forest

I Western North American Pinyon - Juniper Woodland & Scrub

Il Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 3. Vegetation types associated with ANLE Point locations.

ANLE points were largely located with in The North American Warm Desert Scrub & Grassland
followed by Western North American Cool Semi-Desert Scrub & Grassland (Figure 3).



AQCH - Golden eagle

e AQCH iNaturalist Locations
AQCH Original Locations
e AQCH 2023 Locations

Habitat Model

Figure 5. Ensemble Models for AQCH. Including the Vegetation Layer
The models for Golden Eagle nesting sites generally performed well, although the GBM and GAM
models had a lower score for the Boyce index for both the training and especially testing



datasets (Table 8). The models with vegetation include had very similar performance statistics
(Table 9), but showed a far more restrained habitat prediction relative to the non vegetation
models (Figures 4 and 5). The habit values in the “No Veg” models at the localities trended lower,
(P - 0.01), where the models including vegetation had more points with max model values

attributed (Figure 6).

Table 8. Performance metrics for AQCH. AUC (Area under Curve), Bl - (Boyce Index), TSS (true
skill statistic) were each calculated independently for Training and Testing data and using all

points.
Model AUC AU-C AUC
Training  Testing All
EM 1 0.98 1
GBM 1 0.98 0.99
RF 1 0.97 1
GAM 1 0.98 0.99
MX 0.98 0.96 0.97

Bl
Training
0.98
0.79
0.98
0.83
0.94

Bl
Testing
0.91
0.53
0.93
0.41
0.95

Bl
All

0.98
0.9
0.99
0.91
0.96

TSS
Training
0.97
0.96
0.99
0.96
0.84

TSS TSS
Testing All
0.89 0.94
0.89 0.92
0.87 0.97
0.87 0.94
0.78 0.82

Table 9. Performance metrics for AQCH models including vegetation. AUC (Area under Curve), Bl
- (Boyce Index), TSS (true skill statistic) were each calculated independently for Training and

Testing data and using all points.
AUC AUC AUC

Model o )

Training  Testing All
EM 1 0.93 0.99
RF 1 0.94 0.99
GBM 1 0.92 0.99

Model Values at Localites

count

BI
Training
0.98
0.99

0.97

0.50
Value

Bl

Testing
0.84

0.91
0.55

Bl
All
0.94

0.99
0.89

0.75

TSS

Training

1
1
1

TSS TSS
Testing All
0.79 0.96
0.85 0.97
0.74 0.95

Model
No Veg
Veg

1.00

Figure 6. Modeled habitat values for the AQCH Ensemble Models with and without the inclusion

of the Vegetation layer.



All of the algorithms generally had a good spread of variable inclusion (Table 10). Variable
importance indicated that the Distance to Cliffs variable had the lowest contributions, which was
opposite of our expectation. Each of the remaining input variables had contributions over 15%
for at least one of the algorithms, and Average Spring Max Temp, and slope and the two
temperature measures had contributions of 39% or higher. The models including vegetation had
moderate dependence on the vegetation layer, with 8 and 7% importance, and the GBM models
(N=20) showed increased importance of Topographic index, but with inclusion of all variables
with the exception of Minimum Temperature, Distance to Cliffs, and Depth to Bedrock (Table
10). The Random forest models (N=20) had a more balanced inclusion of the environmental
variables (Table 11).

Table 10. Relative importance of the input variables used in modeling for AQCH for the models
without the vegetation layer.

Variable GBM RF GAM MX
Ave Min Temp 0 12.4 20.6 325
Average Spring Max Temp 30 22.5 18.8 28.8
Silt 0 6.2 16.1 12.3
Slope 40.2 21.7 16.1 4
Topographic Index 27.4 18.3 8.9 21.4
Depth to Bedrock 2.4 15.6 17.2 0
Distance to Cliffs 0 3.3 25 1

Table 11. Relative importance of the input variables used in modeling for AQCH for the models
including the vegetation layer.

Variable GBM RE
Ave Min Temp 0 9.4
Average Spring Max Temp 6.6 16.3
Silt 10.7 13.2
Slope 11.5 15.1
Topographic Index 62.9 20.1
Depth to Bedrock 0.3 10.4
Distance to Cliffs 1 7.4
Vegetation 7 8.1

The ensemble model without vegetation was comprised of 18 Random Forest models, 5 GAM
models, with 10 MaxEnt, and 11 GBM models contributing. The ensemble model for the models
with vegetation included contained 13 RF and 2 GBM models.

Vegetation associated with AQCH localities was largely composed of North American Warm
Desert Scrub & Grassland, and Western North American Cool Semi-Desert Scrub & Grassland
(Figure 7).



Vegetation associated with AQCH

Vegetation Type

I Agricultural & Developed Vegetation

Californian Forest & Woodland

Developed, Open Space - Low Intensity

Land Use and Development

North American Warm Desert Scrub & Grassland

North American Western Interior Brackish Marsh, Playa & Shrubland
Rocky Mountain Forest & Woodland

Southwestern North American Warm Desert Freshwater Marsh & Bosque
B wter

Il Western North American Alpine Tundra

[l Western North American Cool Semi-Desert Scrub & Grassland

I Western North American Grassland & Shrubland

. Western North American Interior Chaparral

[ western North American Interior Flooded Forest
Bl Western North American Pinyon - Juniper Woodland & Scrub
. Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 7. Relative frequency of vegetation associations at the locality point locations.



ARCA - Las Vegas Bearpoppy

ARCA Ensemble Model

® ARCA 2023 Locations

e ARCA iNaturalist Locations
ARCA Original Locations

Habitat Model

W 0.98
W o

0 25 50km A
e

Figure 8 - Ensemble Model for ARCA

The Las Vegas Bearpoppy model had extremely high performance measures for both training and
testing evaluations, and across all three performance metrics (Table 12). The models with the
vegetation layer included had similarly high performance (Table 13), and the predicted habitat
appeared to be very similar between models when comparing the areas that had vegetation
information where prediction was possible (Figure 9).

Figure 9. Ensemble model (Left), and the model with the vegetation layer included (Right) for
ARCA.



Table 12. Performance metrics for ARCA. AUC (Area under Curve), Bl - (Boyce Index), TSS (true
skill statistic) were each calculated independently for Training and Testing data, and using all

points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.99 1 1 0.96 1 0.96 0.94 0.95
GAM 0.98 0.99 0.98 0.98 0.97 0.99 0.89 0.9 0.89
RF 1 0.99 1 0.99 0.93 0.97 1 0.95 0.98
MX 0.98 0.99 0.98 0.99 0.99 0.99 0.88 0.9 0.88
GBM 0.99 0.99 0.99 0.99 0.98 0.99 0.91 0.93 0.92

Table 13. Performance metrics for ARCA with the vegetation layer included. AUC (Area under
Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for

Training and Testing data, and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 1 1 0.99 0.95 0.97 1 0.93 0.99
RF 1 1 1 0.99 0.95 0.97 1 0.93 0.99

Model importance showed that each of the selected variables had high contribution in at least
one of the models (e.g. silt in the GAM model), The Average Spring Max Temperature, and the
Soil Gypsum content were among the highest contributors, although the MaxEnt models
depended heavily on the variability in winter precipitation (Table 14).

Table 14. Relative importance of the input variables used in modeling for ARCA.

Variable GAM GBM RF MX
Average Spring Max Temp 21.5 39 26.2 8.5
Soil gypsum 8.7 56.3 289 9.8
NDVI Amplitude 18.7 1.8 14 1.3
Silt 20.9 0 7.4 2.3
CV Winter Precip 30.3 29 235 781

The high performing models with vegetation included only those using Random Forest. The RF
model showed a relatively even inclusion of the Environmental variables, however, the
vegetation layer showed little importance to the models (Table 15) (Table 15).

Vegetation associated with ARCA

Vegetation Type
I Agricultural & Developed Vegetation

B caiifornian Forest & Woodland
. Developed, Open Space - Low Intensity
I tand Use and Development
I North American Warm Desert Scrub & Grassland
B North American Western Interior Brackish Marsh, Playa & Shrubland
B Rocky Mountain Forest & Woodland
I southwestern North American Warm Desert Freshwater Marsh & Bosque
B water
[l Western North American Alpine Tundra
B Western North American Cool Semi-Desert Scrub & Grassland
[ western North American Grassland & Shrubland
[ Western North American Interior Chaparral
I western North American Interior Flooded Forest
[ western North American Pinyon - Juniper Woodland & Scrub
[l western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 10. Relative frequency of vegetation associations at the locality point locations.



Table 15, Relative importance of the input variables used in modeling for ARCA with the
vegetation layer included.

Variable RF
Average Spring Max Temp 23.70
Soil gypsum 33.06
NDVI Amplitude 19.52
Silt 8.58
CV Winter Precip 13.54
Vegl4 1.60

ARCA locations were largely located within North American Warm Desert Scrub & Grassland
with lower presence in Western North American Cool Semi-Desert Scrub & Grassland and lands
classified as Development (Figure 10).

There were 19 random forest, 6 GAM, 10 gbm, and 5 maxent models that contributed to the
ensemble model. The vegetation based models included20 RF models.



ASGETR — Three Corner Milkvetch

ASGE Ensemble Model

& f_'

® ASGE iNaturalist Locations
> ASGE Original Locations
e ASGE 2023 Locations

Habitat Model
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Figure 12 - Ensemble Model for ASGETR with the vegetation layer included.



The Ensemble model for ASGETR had the majority of habitat predicted for the area in the
northeastern extent of Clark County - especially in the Virgin/Muddy River area, Mormon Mesa,
and Moapa (Figure 11). The models with the vegetation layer included had very similar habitat
projections (Figure 12).

Performance was mixed for ASGETR - with very high AUC/BI, and TSS scores for some
algorithms, and with poor performance in others (e.g. GAMs, Table 16). Performance was
similarly high for AUC and TSS in the models where the vegetation layers were included (Table
17). However, the Boyce index for the testing data had much lower scores (Table 17).

Table 16. Performance metrics for ASGETR. AUC (Area under Curve), Bl - (Boyce Index), TSS (true
skill statistic) were each calculated independently for Training and Testing data, and using all

points.
Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 1 1 0.99 0.95 0.99 1 0.93 0.98
GAM 1 0.99 1NA -1 -1 0.99 0.96 0.98
RF 1 0.99 1 0.98 0.84 0.97 1 0.94 0.99
MX 0.99 0.99 0.99 0.99 0.95 0.99 0.93 0.94 0.93
GBM 1 0.99 1 0.84 0.74 0.93 1 0.93 0.98

Table 17. Performance metrics for ASGETR with the vegetation layer included. AUC (Area under
Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for
Training and Testing data, and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 1 1 0.96 0.57 0.89 1 0.98 0.99
RE 1 1 1 0.99 0.8 0.98 1 0.97 0.99
GBM 1 1 1 0.82 0.31 0.9 0.99 0.97 0.98

Variable importance indicated that all of the 6 variables considered had > 10 percent importance
for at least one algorithm. The MaxEnt appeared to have a poor fit, despite high performance
metrics, as it essentially relied only on the Silica Index (Table 18). This variable also performed
high in the GBM model, which also considered winter precipitation, while the GAM and RF
algorithms had more even consideration of the variables used for modeling. In the models
including vegetation the GBM model included only the Silica Index, with ~ 1% inclusion of the
winter precipitation layer. The RF model had 4% importance attributed to the vegetation layer,
with larger importance attributed to several other variables (Table 19).

Table 18. Relative importance of the input variables used in modeling for ASGETR

Variable GAM GBM RF MX
Winter precipitation 13.5 8.7 22.2 0
Winter minimum temperature 26.7 0 10.9 0
NDVI amplitude 11 1.9 13.7 0
Slope 16.1 0 4.6 0.2
Silica index 171 894 376 99.7
Sandy soils 15.8 0 11.1 0.1



Table 19. Relative importance of the input variables used in modeling for ASGETR with
vegetation models included.

Variable GBM RF
Winter precipitation 11 208
Winter minimum temperature 0 6.5
NDVI amplitude 0 9.3
Slope 0 7.2
Silica index 989 411
Sandy soils 0 111
Vegetation 0 4

The ASETR ensemble model was comprised of 14 Random Forest, 11 Maxent, 14 GBM, and 1
GAM model (which explains the poor performance metrics for GAM). The models including the
vegetation layer were composed of 14 RF and 10 GBM models.

Vegetation associated with ASGETR

Vegetation Type
B Agricultural & Developed Vegetation
I californian Forest & Woodland
I oeveloped, Open Space - Low Intensity
4 . Land Use and Development
I North American Warm Desert Scrub & Grassland
B North American Western Interior Brackish Marsh, Playa & Shrubland
B Rocky Mountain Forest & Woodland

B southwester North American Warm Desert Freshwater Marsh & Bosque

B water

Bl Western North American Alpine Tundra

. Western North American Cool Semi-Desert Scrub & Grassland

I Western North American Grassland & Shrubland

I Western North American Interior Chaparral

. Western North American Interior Flooded Forest

I western North American Pinyon - juniper Woodland & Scrub

. Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 13. Relative frequency of vegetation associations at the locality point locations for
ASGETR.

Vegetation associated with ASGETR localities was largely within North American Warm Desert
Scrub & Grassland (Figure 13).



ATCU - Burrowing Owl
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Figure 15 - Model for ATCU with the vegetation layer included.



The Burrowing Owl model showed a similar habitat prediction for both the models with and
without vegetation (Figures 15 and 14 respectviely). Model performance for the burrowing owl
models was mixed, with high performance for training data in all algorithms, but with lower
testing performance for the Boyce index for the GAM model, and with lower TSS for testing sets
in the GAM and Maxent models (Table 20). The GBM model had lower performance for the
models including vegetation (Table 21), with lower AUC, and Bl for the Testing dataset. The RF
model performed well for most metrics (Table 21).

Table 20. performance metrics for ATCU. AUC (Area under Curve), Bl - (Boyce Index), TSS (true
skill statistic) were each calculated independently for Training and Testing data, and using all

points.
Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS Training TSS_Testing TSS_All

EM 1 0.95 0.99 0.88 0.68 0.94 0.98 0.8 0.93
GAM 0.99 0.92 0.98 0.76 0.32 0.75 0.9 0.73 0.85
RF 1 0.96 0.99 0.81 0.72 0.93 1 0.86 0.95
MX 0.98 0.92 0.97 0.9 0.76 0.9 0.9 0.73 0.85
GBM 1 0.95 0.99 0.89 0.65 0.93 0.98 0.84 0.94

Table 21. performance metrics for ATCU models including the vegetation layer. AUC (Area under
Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for
Training and Testing data, and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS Training TSS_Testing TSS_All

EM 1 0.95 0.99 0.97 0.9 0.98 1 0.86 0.97
RF 1 0.95 0.99 0.99 0.9 0.96 1 0.86 0.97
GBM 1 0.94 0.99 0.96 0.67 0.96 0.94 0.79 0.91

Variable importance indicated high inclusion of most variables, although with different
importance among algorithms (Table 22). The GBM model essentially modeled using three of the
six variables, while the MaxEnt model largely relied on only three. The models including
vegetation had moderate importance attributed to vegetation (Table 23). The GBM model was
largely slow based, while the RF had a more balanced importance among the environmental
layers, and 10% attributed to vegetation (Table 23).

Table 22. Relative importance of the input variables used in modeling for ATCU

Variable GAM GBM RF MX
Winter precipitation 7.3 326 26.8 13
Winter minimum temperature 23.6 207 26.4 39

NDVI amplitude 17.3 0 6.9 13.8
Slope 179 46.7 328 435
Coarse Fragments 33.9 0 7.1 2.5

Table 23. Relative importance of the input variables used in modeling for ATCU with the
vegetation layer included

Variable GBM RF
Winter precipitation 4.5 20.8
Winter minimum temperature 8.1 17.1
NDVI amplitude 0 6.9
Slope 85.4 37
Coarse Fragments 0 8
Vegetation 1.9 10.1

Localities for Burrowing Owls had the highest association with North American Warm Desert
Scrub & Grassland, and interestingly Land Use and Development was the second highest,
followed by Western North American Cool Semi-Desert Scrub & Grassland  (Figure 16). Several
other vegetation types had limited association with the localities.



Vegetation associated with ATCU

Vegetation Type

I Agricultural & Developed Vegetation

I californian Forest & Woodland

. Developed, Open Space - Low Intensity

I Land Use and Development

B North American Warm Desert Scrub & Grassland

B North American Western Interior Brackish Marsh, Playa & Shrubland
I Rocky Mountain Forest & Woodland

- Southwestern North American Warm Desert Freshwater Marsh & Bosque

B wter

Il Western North American Alpine Tundra

[l Western North American Cool Semi-Desert Scrub & Grassland

Il Western North American Grassland & Shrubland

. Western North American Interior Chaparral

[ western North American Interior Flooded Forest

I western North American Pinyon - Juniper Woodland & Scrub

I Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 16. Relative frequency of vegetation associations at the locality point locations for ATCU.

The model contribution toward the ensemble model was comprised of 17 random forest
models,7 MaxEnt models, 5 GAM models, and 13 GBM models. The models using vegetation
included 20 RF, and 3 GBM models.



CHPE — Desert Pocket Mouse
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Figure 18 - Ensemble Model for CHPE - for models including the vegetation layer.



The models including the vegetation layer for CHPE had similar predicted habitat relative to the
base models (Figures 17 and 18). There were notable reductions west of the confluence of the
Muddy and Virgin rivers, and a significant retraction in the southern part of the county (Figures
17 and 18). There was also a reduced level of prediction throughout the county, although the
overall suitability levels were not different between models (p= 0.85).

Model Values at Localites

10-

Model

No Veg

count

025 0.50 0.75 1.00
Value

Figure 19. Model values for the Ensemble models with and without vegetation included.

The base models for the Desert Pocket Mouse generally performed well, although the GAM
model had lower scored for the Boyce index (Training and Testing), and the GBM model had poor
performance in the testing set for the Boyce Index (Table 24). The models including vegetation
had similarly high performance,the BI for the testing data had poor performance (Table 25).

Table 24. performance metrics for CHPE models without vegetation. AUC (Area under Curve), Bl
- (Boyce Index), TSS (true skill statistic) were each calculated independently for Training and

Testing data, and using all points.
Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS Training TSS_Testing TSS_All

EM 1 0.97 1 0.99 0.78 0.85 1 0.88 0.97
gam 1 0.96 0.99 0.29 0.47 0.47 0.98 0.81 0.95
rf 1 0.96 1 0.97 0.89 0.92 1 0.81 0.96
mx 0.99 0.95 0.98 0.93 0.94 0.97 0.87 0.81 0.86
gbm 1 0.96 1 0.84 0.26 0.78 1 0.81 0.96

Table 25. performance metrics for CHPE models including vegetation. AUC (Area under Curve), Bl
- (Boyce Index), TSS (true skill statistic) were each calculated independently for Training and
Testing data, and using all points.

Model AUC_Training AUC_Testing AUC_AIl Bl_Training BI_Testing BI_All TSS Training TSS_Testing TSS_All
EM 1 0.94 1 0.99 0.3 0.98 1 0.78 0.94

RE 1 0.93 1 0.98 045 0.7 1 0.78 0.96
GBM 1 0.94 0.99 0.98 045  0.93 1 0.78 0.94



Model variable importance indicated that Silt, average minimum temperature, and the variability
in winter precipitation were all important in at least one model. Despite being used in previous
models the NDVI measures of start of season (an NDVI measure of plant growth initiation), and
the peak value did not contribute importantly in any algorithm, and percent of clay also
contributed minimally (Table 26) .Of the remaining variables Average Minimum Temperature
and the CV in winter precipitation had the highest contributions, although it should be noted
that the MaxEnt model again relied heavily on only one variable, which typically indicates poor
model fit. The models including the vegetation layer had high importance attributed to
vegetation (Table 27) - where the GBM model importance shifted away from Average Minimum
Temperature, and Silt, and the importance for variables within the RF model remained more
balanced (Table 27).

Table 26. Relative importance of the input variables used in modeling for CHPE

Variable GAM GBM RF MX
Winter Precip 2.7 3.8 13.2 0.3
Start of Season (day) 0 0 4.7 0.3
PPT Clay 4.1 1.2 7.3 1
CV Winter Precip 14.5 1.9 11.8 90.6
PCT Coarse frags 18 5 10.4 0.3
Ave Min Temp 30 68.4 282 5.9
NDVI Max 4.6 0.6 7.6 0.1
PPT Silt 26.1 191 16.7 1.6

Table 27. Relative importance of the input variables used in modeling for CHPE for models
including the vegetation layer.

Variable GBM RF
Winter Precip 535 21.9
Start of Season (day) 0 6.2
PPT Clay 0 6.4
CV Winter Precip 1.4 9.4
PCT Coarse frags 3 9.8
Ave Min Temp 9.3 11.7
NDVI Max 1 8.6
PPT Silt 0.4 9
Vegetation 31.3 17

Vegetation associated with AQCH

Vegetation Type

I Agricultural & Developed Vegetation

B californian Forest & Woodland

. Developed, Open Space - Low Intensity

I Land Use and Development

I North American Warm Desert Scrub & Grassland

Il North American Westen Interior Brackish Marsh, Playa & Shrubland

B Rocky Mountain Forest & Woodland

. Southwestern North American Warm Desert Freshwater Marsh & Bosque
B water

B Western North American Alpine Tundra

[l Western North American Cool Semi-Desert Scrub & Grassland

B Western North American Grassland & Shrubland

[ Western North American Interior Chaparral

I western North American Interior Flooded Forest

Bl Western North American Pinyon - Juniper Woodland & Scrub

Il Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 20. Relative frequency of vegetation associations at the locality point locations for CHPE.



Vegetation associated with CHPE localities was generally comprised of North American Warm

Desert Scrub & Grassland, Land Use and Development, and Western North American Interior
Flooded Forest to a lesser extent (Figure 20).

Contributions of algorithms toward the ensemble model consisted of 19 random forest models,

11 MaxEnt models, 2 GAM models, and 10 GBM models. Ensemble Models including vegetation
consisted of 13 RF and 12 GBM models.



COCH - Gilded Flicker
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Figure 21 - Ensemble Model for Gilded Flicker

Predicted habitat differed somewhat between the base Ensemble Models (Figure 21), and those
with vegetation included (Figure 22). The models withe vegetation included had a reduction in
predicted habitat in the northern portions of the county, with predictions in the south - where
most localities were - remaining similar between the models.

Figure 22. Ensemble Model with vegetation included for Gided Flicker



Model performance was high for all algorithms with an extremely low score for the Boyce index
for the testing dataset (Table 28). All other algorithms were very high in all areas. The models
including vegetation had similar performance metrics (Table 29).

Table 28. performance metrics for COCH. AUC (Area under Curve), Bl - (Boyce Index), TSS (true
skill statistic) were each calculated independently for Training and Testing data, and using all

points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.96 0.99 0.95 0.79 0.98 1 0.81 0.95
gam 0.99 0.94 0.98 0.9 0.13 0.93 0.93 0.81 0.9

rf 1 0.98 1 0.98 0.8 0.99 1 0.87 0.97
mx 0.97 0.91 0.96 0.89 0.85 0.87 0.87 0.81 0.86
gbm 1 0.94 0.99 0.77 0.84 0.92 0.99 0.78 0.95

Table 29. performance metrics for COCH for models including vegetation. AUC (Area under
Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for
Training and Testing data, and using all points.

Model AUC_Training AUC_Testing AUC_AIl Bl_Training BI_Testing BI_All TSS Training TSS_Testing TSS_All

EM 1 0.99 1 0.98 08 097 1 0.91 0.98
RE 1 1 1 0.92 0.8 097 1 1 0.98
GBM 1 0.99 1 1 08 083 1 0.91 0.98

Variable importance indicated again that NDVI measures had the lowest contributions. Maxent
again focused on a single variable model, and GBM largely on two, while the GAM and Random
forest had more even consideration of input variables (Table 30). Winter precipitation, and
topography measures had high contributions. For the models including vegetation there was
high importance associated with that layer as well (Table 31). The GBM models were essentially
driven by 3/4 input variables, while the RF models were more balanced, similarly to its
performance among other species modeled herein.

Table 30. Relative importance of the input variables used in modeling for COCH

Variable GAM GBM RF MX

Dist to cliffs 18.4 0 4.6 0
NDVI Length of Season 45 0 5.5 0
NDVI Max 34 0.6 8.6 0
Winter Precip 276 111 177 0.1
CV Winter Precip 33.3 80 35 987
Slope 7.5 4 154 12
Flow Accum 54 44 131 0

Table 31. Relative importance of the input variables used in modeling for COCH for models
including vegetation.

Variable GBM RF
Dist to cliffs 0 31
NDVI Amplitude 7.6 14.9
NDVI Length of Season 0 3.2
NDVI Max 0 6.4
Winter Precip 45.7 26.8
CV Winter Precip 25.8 18.5
Slope 5 9.2

Flow Accum 11 5.9

Vegetation 14.8 12

The ensemble model was comprised of 15 Random Forest models, 14 GBM models, with 9
MaxEnt, and 4 GAM models contributing. The vegetation ensemble model consisted of 20 each
of RF and GBM models.

The vegetation associated with the localities for COCH was largely within Western North



American Cool Semi-Desert Scrub & Grassland, and North American Warm Desert Scrub &
Grassland (Figure 23).

Vegetation associated with COCH

Vegetation Type

. Agricultural & Developed Vegetation

I californian Forest & Woodland

I oeveloped, Open Space - Low Intensity

I Land Use and Development

Il North American Warm Desert Scrub & Grassland

. North American Western Interior Brackish Marsh, Playa & Shrubland
B Rocky Mountain Forest & Woodland

|

Southwestern North American Warm Desert Freshwater Marsh & Bosque

Il western North American Alpine Tundra

- Western North American Cool Semi-Desert Scrub & Grassland

[ western North American Grassland & Shrubland

I Western North American Interior Chaparral

I western North American Interior Flooded Forest

I Western North American Pinyon - juniper Woodland & Scrub

. Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 23. Relative frequency of vegetation associations at the locality point locations for COCH.



ENAR - Silverleaf sunray
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Figure 24. Ensemble Model for ENAR

Figure 25. Vegetation included ensemble model output for ENAR.



Models for ENAR have very similar appearance for based model, and the vegetation inclusion
model with predicted range reduction in southern portion of the county (Figures 24 and 25). The
models generally performed well, although for the base models the GBM model had a lower
score for the Boyce index (testing dataset), and the GAM model had slightly poorer performance
in the testing set for the Boyce Index compared to other algorithms (Table 32). The models
including vegetation also had high performance (Table 33).

Table 32. Performance metrics for the base models for ENAR. AUC (Area under Curve), Bl -
(Boyce Index), TSS (true skill statistic) were each calculated independently for Training and
Testing data and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing  TSS_All
EM 1 0.99 1 0.99 0.95 0.99 0.97 0.88 0.95
GAM 0.99 0.97 0.98 0.98 0.81 0.96 0.89 0.81 0.87
RF 1 0.99 1 1 0.87 0.93 1 0.89 0.98
MX 0.98 0.96 0.97 1 0.97 1 0.84 0.81 0.82
GBM 1 0.98 0.99 0.95 0.63 0.93 0.95 0.87 0.94

Table 33. Performance metrics for the vegetation inclusion models for ENAR. AUC (Area under
Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for
Training and Testing data and using all points.

Model AUC_Training AUC_Testing AUC_AIl Bl_Training BI_Testing BI_All TSS Training TSS_Testing TSS_All

EM 1 0.98 1 0.91 0.77 0.79 1 0.89 0.98
RF 1 0.98 1 0.88 0.84 0.82 1 0.89 0.98
GBM 1 0.93 0.99 0.99 0.95 0.99 1 0.89 0.98

Variable importance indicated that NDVI measures had the lowest contributions. The Maxent
algorithm was based on a single variable (topographic roughness) indicating potentially poor
model fit, and GBM largely on two variables (winter minimum temperature and gypsum
potential), while the GAM and Random forest had more even consideration of input variables
(Table 4). Winter precipitation, winter minimum temperature, and gypsum potential measures
had high contributions towards GAM and Random forest models. Models including vegetation
showed vegetation as an important component for the RF, but not the GBM models (Table 35).
The GBM model relied heavily on Vegetation, Winter Minimum Temperature and Gypsum, while
the RF had a more balanced importance across the variables, with Vegetation and Winter
Minimum Temperature as the highest importance (Table 35). The GBM models were largety
drive by Gypsum potential, with limited influence of NDVI and Minimum temperatures.

Table 34. Relative importance of the input variables used in base modeling for ENAR.

Variable GAM GBM RF MX
Winter min temperature 19.1 50 33.9 2.8
Gypsum potential 16.1 48.4 26.2 1.9
NDVI maximum 104 0.3 10.4 0.1
Surface texture (ATI) 13.2 0 6.6 0.1
Winter precipitation 27.4 1.4 14.7 0.1
Roughness (TRI) 13.8 0 8.2 95.1



Table 35. Relative importance of the input variables used in modeling for ENAR with the
vegetation layer included..

Variable GBM RF
Winter min temperature 49 153
Gypsum potential 87.8 353
NDVI maximum 6.7 175
Surface texture (ATI) 0 10.7
Winter precipitation 0 6.6
Roughness (TRI) 0 7.6
Vegetation 0.6 7.1

Vegetation associated with ENAR

Vegetation Type

I Agricultural & Developed Vegetation

B californian Forest & Woodland

I oeveloped, Open Space - Low Intensity

I Land Use and Development

. North American Warm Desert Scrub & Grassland

B North American Westen Interior Brackish Marsh, Playa & Shrubland

I Rocky Mountain Forest & Woodland

- Southwestern North American Warm Desert Freshwater Marsh & Bosque
B water

Il Western North American Alpine Tundra

Il Western North American Cool Semi-Desert Scrub & Grassland

B Western North American Grassland & Shrubland

- Western North American Interior Chaparral

Il Western North American Interior Flooded Forest

I Western North American Pinyon - Juniper Woodland & Scrub

Il Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 26. Relative frequency of vegetation associations at the locality point locations for ENAR.

The vegetation associated with ENAR localities was largely North American Warm Desert Scrub &
Grassland, with smaller elements Western North American Cool Semi-Desert Scrub & Grassland
and other elements (Figure 26).

The ensemble model was comprised of 17 Random Forest models, 7 GAM models, with 4
MaxEnt, and 12 GBM models contributing. For the vegetation inclusion models there were 20 RF
and 20 GBM models used in the ensemble.



ERBI — Pahrump Valley buckwheat
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Figure 27. Ensemble base Model for ERBI.

Figure 28. Ensemble base Model for ERBI.



The models for Pahrump Valley buckwheat predict similar habitat footprints (Figures 26 and 27).
The ensemble model including vegetation also predicts habitat near the Corn Creek area (Figure
27), suggesting suitable habitat along the US 95 corridor as is seen in the models without
vegetation (Figure 26), but the vegetation model only includes a portion of this area in the plant
classification conducted to date. The models generally performed well, although the GBM in the
base model had a lower score for the Boyce index (testing and training dataset), and the GAM
model had much poorer performance in the testing set for the Boyce Index compared to other
algorithms in the base models (Table 36). The models including vegetation showed high
performance with the exception of the Boyce index for the GBM models, which had low values
for both the training and testing data (Table 37). This is reflected in the Boyce Index Curves
shown for this model (Figure 28), although it should be noted that the ensemble model BI
remains high (Table 37), and has an excellent Bl curve indicating good model discrimination
(Figure 29).

Table 36. Performance metrics for ERBI. AUC (Area under Curve), Bl - (Boyce Index), TSS (true

skill statistic) were each calculated independently for Training and Testing data and using all
points.

Model AUC_Training AUC_Testing AUC_AIl Bl_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 0.99 1 0.95 0.95 0.98 1 0.94 0.98
GAM 1 0.99 1 0.55 0.82 0.89 0.98 0.88 0.96
RF 1 0.99 1 0.74 0.9 0.9 1 0.94 0.99
MX 1 0.99 0.99 0.96 0.92 0.95 0.93 0.94 0.93
GBM 1 0.99 1 0.06 0.88 0.77 1 0.94 0.99

Table 37. Performance metrics for the vegetation inclusion models for ERBI. AUC (Area under
Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for
Training and Testing data and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 1 1 0.97 0.83 0.87 1 1 1
RF 1 1 1 0.78 0.77 0.91 1 1 0.98
GBM 1 1 1 0.91 0.29 0.82 1 1 1
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Figure 29. Continuous Boyce Index plots for the overall Ensemble vegetation model (Top), and
the Random Forest (RF) models and GBM models used in the ensemble.

Variable importance for the base models indicated that the percent silt covariate had the lowest
contributions across most models. Average maximum temperature, extreme minimum
temperature, and slope had high contributions and were important across several algorithms
(Table 38). For the models including vegetation the GBM shifted moderate importance to the
vegetation layer, Slope, and the Extreme Minimum Temperature layer - with O importance for
other layers (Table 39). The Random Forest model for the vegetation approach showed a 11%
importance for the vegetation layer, with importance attributed to all other variables of at least
5% (Table 39).

Table 38. Relative importance of the input variables used in modeling for ERBI.

Variable GAM GBM RF MX
Ave Max Temp 23.6 12.8 28.1 44.2
Clay 20.5 0 5.6 5.8
Extreme Min Temp 32.6 14.4 25.1 40
Silt 14.7 0 4.1 2
Slope 8.5 72.8 37.1 8

Table 39. Relative importance of the input variables used in modeling for ERBI.

Variable GBM  RF
Ave Max Temp 6.8 243
Clay 0 5
Extreme Min Temp 182 23
Silt 0 5
Slope 67.4 30.8
7.6 11.9

Vegetation



Vegetation associated with the ERBI localities was largely North American Warm Desert Scrub &

Grassland (Figure 30).

Vegetation associated with ERBI

Vegetation Type

. Agricultural & Developed Vegetation

I californian Forest & Woodland

I oeveloped, Open Space - Low Intensity

I Land Use and Development

Il North American Warm Desert Scrub & Grassland

. North American Western Interior Brackish Marsh, Playa & Shrubland

B Rocky Mountain Forest & Woodland

B southwestern North American Warm Desert Freshwater Marsh & Bosque
B water

Il western North American Alpine Tundra

- Western North American Cool Semi-Desert Scrub & Grassland

[ western North American Grassland & Shrubland

I Western North American Interior Chaparral

I western North American Interior Flooded Forest

I Western North American Pinyon - juniper Woodland & Scrub

. Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 30. Relative frequency of vegetation associations at the locality point locations for ERBI.

The ensemble model was comprised of 14 Random Forest models, 6 GAM models, with 8
MaxEnt, and 12 GBM models contributing. The ensemble models including vegetation were 20

each of RF and GBM algorithms.



ERCO - Las Vegas buckwheat
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Figure 31. Ensemble Model for the base model approach for ERCO.

Figure 32. Ensemble Model for the vegetation inclusion models for ERCO.



The Las Vegas buckwheat model had a similar footprint of predicted habitat for both the base
model (Figure 31) and the models including vegetation (Figure 32). The base model had high
overall performance - where AUC, BI, and TSS all had high values with minimal losses between
training and testing data (Table 40). The GAM and GBM models evaluated with the testing
dataset had lower Bl scores than other algorithms, with the GAM model having especially low
scores (Table 40). The models including vegetation had high performance (Table 41).

Table 40. Performance metrics for ERCO. AUC (Area under Curve), Bl - (Boyce Index), TSS (true

skill statistic) were each calculated independently for Training and Testing data and using all

points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 0.98 1 0.92 0.9 0.97 1 0.9 0.98
GAM 1 0.97 0.99 0.87 0.34 0.85 0.99 0.9 0.97
RF 1 0.99 1 0.98 0.89 0.98 1 0.88 0.98
MX 0.99 0.97 0.99 0.98 0.92 0.99 0.92 0.85 0.9
GBM 1 0.98 1 0.88 0.68 0.83 1 0.9 0.98

Table 41. Performance metrics for ERCO with the vegetation layer included. AUC (Area under

Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for

Training and Testing data and using all points.

Model AUC_Training AUC_Testing AUC_AIll Bl_Training BI_Testing BI_All TSS_Training TSS_Testing  TSS_All

EM 1 1 1 0.97 0.82 0.95 1 0.97 0.99
RF 1 1 1 0.94 0.8 0.98 1 1 1
GBM 1 0.99 1 0.93 0.97 0.98 0.99 0.94 0.98

Variable importance indicated that maximum NDVI had low contributions towards all models
(Table 42). The MaxEnt model was a single variable model, and GBM was largely dependent on
three variables. The other models had contributions from all variables, with CV of winter
precipitation and average maximum temperature contributing the most (Table 42). The models
including vegetation showed mixed importance of the vegetation layer, with the GBM model
showing 25%, and the RF models with 14% (Table 43). Both the GBM and RF had influence of
several variables with Average Maximum Temperature and Gypsum as two of the highest
performing variable for both (Table 43).

Table 42. Relative importance of the input variables used in modeling for ERCO.

Variable GAM GBM RF MX
Ave Max Temp 20.9 34.3 25.3 1.6
Soil gypsum 3.6 47 24.3 2.2
NDVI Amplitude 12.6 15.4 16.9 7.8
NDVI Max 2.1 0 5.1 0.2
Silt 7.2 0.7 9.6 4.9
Start of Season (day) 20.4 2.6 10.4 0.4

CV Winter Precip 33.2 0 8.4 82.9



Table 43. Relative importance of the input variables used in modeling for ERCO with the
vegetation layer included.

Variable GBM RF
Ave Max Temp 16.3 21.3
Soil gypsum 29.5 17
NDVI Amplitude 16.9 15.2
NDVI Max 0 4.7
Silt 0.3 7.9
Start of Season (day) 12.4 12.5
CV Winter Precip 0 7.7
Vegetation 24.7 13.6

Vegetation associated with ERCO

Vegetation Type

. Agricultural & Developed Vegetation

I californian Forest & Woodland

I Developed, Open Space - Low Intensity

I Land Use and Development

I North American Warm Desert Scrub & Grassland

. North American Western Interior Brackish Marsh, Playa & Shrubland

B Rocky Mountain Forest & Woodland

I southwestern North American Warm Desert Freshwater Marsh & Bosque
B wter

Il Western North American Alpine Tundra

. Western North American Cool Semi-Desert Scrub & Grassland

[ western North American Grassland & Shrubland

I western North American Interior Chaparral

I western North American Interior Flooded Forest

I Western North American Pinyon - Juniper Woodland & Scrub

. Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 33. Relative frequency of vegetation associations at the locality point locations for ERCO.

The vegetation associated with ERCO localities was largely attributed to Land Use and
Development, with secondary attribution of North American Warm Desert Scrub & Grassland,
and Western North American Cool Semi-Desert Scrub & Grassland (Figure 33).

The ensemble model was comprised of 13 Random Forest models, 2 GAM, 9 MaxEnt, and 16
GBM models contributing. The vegetation inclusion ensemble model was created from a
combination of 20 RF an20 GBM models.



ERVI — Sticky buckwheat

ERVI Ensemble Model
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Figure 35. Ensemble Model for ERVI for the models including the vegetation layer.

The Sticky buckwheat model had somewhat similar predicted habitat for both models with and
without vegetation (Figures 34 and 35), but with the vegetation model more closely associated



with the Muddy and Virgin River areas (Figure 35). The models had high overall performance -
where AUC, BI, and TSS all had high values with minimal losses between training and testing data
(Table 44). The GAM and GBM models had lower Bl scores than other algorithms, with both
models having especially low scores for training, testing, and all data (Table 44). The
performance for models including vegetation also had good performance for AUC and TSS, but
had poor Boyce indices when evaluated with both the testing datasets (Table 45).

Table 44. Performance metrics for ERVI. AUC (Area under Curve), Bl - (Boyce Index), TSS (true
skill statistic) were each calculated independently for Training and Testing data and using all
points.

Model AUC_Training AUC_Testing AUC_AIl BIl_Training Bl_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 1 1 0.92 0.53 0.94 1 1 1
GAM 1 1 1 0.14 0.59 0.59 1 0.97 0.99
RF 1 1 1 0.93 0.85 0.96 1 1 1
MX 0.98 0.99 0.98 0.97 0.97 0.97 0.93 0.97 0.94
GBM 1 1 1 0.31 0.76 0.71 1 0.97 0.99

Table 45. Performance metrics for ERVI models with the vegetation layer included. AUC (Area
under Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for
Training and Testing data and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 0.99 1 0.9 0.74 0.93 1 0.9 0.98
RE 1 1 1 0.93 0.83 0.96 1 0.93 0.99
GBM 1 0.98 1 0.83 0.47 0.81 0.99 0.86 0.95

Average spring maximum temperature and CV of winter precipitation had generally high
contributions towards all models (Table 46). The Maxent model as well as the GBM model were
largely dependent on a single variable. However, GAM and Random Forest models were
dependent on multiple variables (Table 46). Models including vegetation had moderate
importance attributed to the vegetation layer for RF only, while GBM had no attribtution. The
GBM model largely relied on three other variables (Average Spring Max Temp, coarse fragments,
and variability in precipitation) - while the RF again had more balanced inclusion (Table 47).

Table 46. Relative importance of the input variables used in modeling for ERVI.

Variable GAM GBM RF MX
Average Spring Max

Temp 47.8 82.2 48 3.6
Depth to bedrock 10.2 0 11.1 0
Coarse frags 7.2 2.2 13.6 0.5
Sand 2.6 0 4 0.2
CV Winter Precip 32.2 15.6 23.3 95.7



Table 47. Relative importance of the input variables used in modeling for ERVI with vegetation

included.

Variable GBM
Average Spring Max Temp 57.7
Depth to bedrock 0
Coarse frags 26.9
Sand 0
CV Winter Precip 154
Vegetation 0

Vegetation associated with ERVI

RF
317

11.5
23.6
6.1
19.5
7.6

Vegetation Type

B Agricultural & Developed Vegetation

. Californian Forest & Woodland

- Developed, Open Space - Low Intensity

I tand Use and Development

B North American Warm Desert Scrub & Grassland

I North American Western Interior Brackish Marsh, Playa & Shrubland

B Rocky Mountain Forest & Woodland

. Southwestern North American Warm Desert Freshwater Marsh & Bosque
B water

[l Western North American Alpine Tundra

. Western North American Cool Semi-Desert Scrub & Grassland

B Western North American Grassland & Shrubland

I western North American Interior Chaparral

I Western North American Interior Flooded Forest

. Western North American Pinyon - Juniper Woodland & Scrub

. Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 36. Relative frequency of vegetation associations at the locality point locations for ERVI.

ERVI localities were most commonly associated with North American Warm Desert Scrub &
Grassland and Western North American Cool Semi-Desert Scrub & Grassland (Figure 36).

The ensemble model was comprised of 20 Random Forest models, 7 GAM, 3 MaxEnt, and 10
GBM models contributing. The ensemble model including vegetation was composed of 20 RF

models and 17 GBMs.



GOAG — Mojave Desert tortoise
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Figure 38. Ensemble Models for GOAG including the vegetation layer.



Predicted habitat for Desert Tortoises was similar between the base models, and the models
including the vegetation layer (Figures 37 and 38). The base models high performance across the
board. However, the RF models had a lower Boyce index for the training and testing data. (Table
48). The models including vegetation had only RF models selected as high performing. The
overall performance was excellent, with all metrics high for both training and testing data (Table
49).

Table 48. Performance metrics for GOAG. AUC (Area under Curve), Bl - (Boyce Index), TSS (true
skill statistic) were each calculated independently for Training and Testing data and using all
points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training Bl_Testing BI_All TSS_Training TSS_Testing TSS_AIl

EM 1 0.97 0.99 0.85 0.91 0.89 0.91 0.83 0.9
GBM 0.96 0.95 0.96 0.99 0.97 0.99 0.8 0.8 0.8
RF 1 0.97 1 0.63 0.7 0.82 0.99 0.84 0.96
GAM 0.95 0.95 0.95 1 0.97 1 0.78 0.77 0.78
MX 0.95 0.95 0.95 1 0.99 1 0.78 0.79 0.78

Table 49. Performance metrics for GOAG models including the vegetation layer. AUC (Area under
Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for
Training and Testing data and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS Training TSS_Testing TSS_All

EM 1 0.97 1 0.94 0.98 0.99 1 0.89 0.98
RF 1 0.97 1 0.99 0.99 1 1 0.84 0.96

Variable importance indicated that the coefficient of variation for Winter precipitation largely
drove the MaxEnt models, while the other three algorithms had multiple variables contributing
toward performance, with the CV of winter precip being the least important. Soil substrate
variables and max temperature were important in the other three algorithms. The GBM model
was largely driven by these, with no contribution of slope or winter precipitation contributing,
while the GAM and RF models were supported by these variables. (Table 50). The RF models
including vegetation showed only 2.7% importance of the vegetation layer, with balanced
inclusion of the remaining variables (Table 51).

Table 50. Relative importance of the input variables used in modeling for GOAG.

Variable GBM RF GAM MX
Ave Max Temp 11 19.4 17.1 3.3
Depth to Bedrock 514 19.8 17.9 0

PPT Sand 37.6 19.6 15.3 1.3
Slope 0 12.5 16.8 1.4
Winter Precip 0 19.7 16.9 0.1

CV Winter Precip 0 9 16 93.8



Table 51. Relative importance of the input variables used in modeling for GOAG with vegetation
layer included.

Variable RF
Ave Max Temp 13.30
Depth to Bedrock 18.68
PPT Sand 23.33
Slope 12.44
Winter Precip 22.02
CV Winter Precip 7.63

2.61

Vegetation

The ensemble model was comprised of 20 Random Forest models, and 16 GBM models, with 2
GAM models, with 3 MaxEnt models contributing. Ther were 20 RF models contributing to the
vegetation based ensemble model.

Vegetation associated with GOAG

Vegetation Type

I Agricultural & Developed Vegetation

B californian Forest & Woodland

I oeveloped, Open Space - Low Intensity

I Land Use and Development

. North American Warm Desert Scrub & Grassland

Il North American Western Interior Brackish Marsh, Playa & Shrubland

I Rocky Mountain Forest & Woodland

- Southwestern North American Warm Desert Freshwater Marsh & Bosque
W water

ll Western North American Alpine Tundra

[l Western North American Cool Semi-Desert Scrub & Grassland

B Western North American Grassland & Shrubland

- Western North American Interior Chaparral

[ western North American Interior Flooded Forest

Il Western North American Pinyon - Juniper Woodland & Scrub

I Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 39. Relative frequency of vegetation associations at the locality point locations for GOAG.

GOAG localities were largely located within North American Warm Desert Scrub & Grassland,
and Western North American Cool Semi-Desert Scrub & Grassland (Figure 39).



LALU — Loggerhead shrike
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Figure 41. Ensemble Model for the LALU models including vegetation.



The habitat predictions for Loggerhead Shrike had similar footprints of predicted habitat (Figures
40 and 41), which is likely do to the low importance of the vegetation layer in the modeling effort
(Table 55). For this species only GBM and RF models were in the highest performing groups. The
Loggerhead shrike model had high performance for certain algorithms - where AUC and TSS all
had high values with minimal losses between training and testing data (Table 52). The Bl scores
were generally lower, with the GBM and Random Forest models having low Bl scores for training,
testing, and all data. The ensemble model had low scores for training and all data. The models
including vegetation had higher performance for all metric (Table 53).

Table 52. Performance metrics for LALU. AUC (Area under Curve), Bl - (Boyce Index), TSS (true
skill statistic) were each calculated independently for Training and Testing data and using all
points.

Model AUC_Training AUC_Testing AUC_AIll BI_Training Bl _Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 0.97 0.99 0.18 0.81 0.55 0.91 0.84 0.89
GBM 0.96 0.96 0.96 0.74 0.6 0.73 0.82 0.81 0.82
RF 1 0.97 1 0.32 0.83 0.84 0.99 0.85 0.96

Table 53. Performance metrics for the vegetation inclusive models for LALU. AUC (Area under
Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for
Training and Testing data and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 0.96 1 0.99 0.95 0.97 1 0.88 0.98

0.96 1 0.99 0.95 0.97 1 0.88 0.98

RF 1
Flow accumulation and slope had generally high contributions towards all models (Table 54). The
GBM model as well as the Random Forest model were dependent on multiple variables, with the
Random Forest model having contributions from all variables included in modeling (Table 54).
Inclusion of the vegetation layer influenced included only RF models, where there was 5%
performance attributed to vegetation (Table 55).

Table 54. Relative importance of the input variables used in modeling for LALU for the base
model set.

Variable GBM RF
Winter Precip 0 12.4
CV Winter Precip 2.8 12.4
Average Spring Max Temp 0.3 10.8
Slope 311 20.9
NDVI Start of Season 0.2 14.2
Flow Accum 65.6 29.2



Table 55. Relative importance of the input variables used in modeling for LALU for the vegetation
added model set

Variable RF
Winter Precip 12.71
CV Winter Precip 13.34
Average Spring Max Temp 11.31
Slope 22.15
NDVI Start of Season 12.39
Flow Accum 22.98
Vegetation 5.12

Vegetation associated with LALU

Vegetation Type

B Agricultural & Developed Vegetation

I californian Forest & Woodland

I oeveloped, Open Space - Low Intensity

. Land Use and Development

B North American Warm Desert Scrub & Grassland

B North American Wester Interior Brackish Marsh, Playa & Shrubland
B Rocky Mountain Forest & Woodland

[ southwestern North American Warm Desert Freshwater Marsh & Bosque

B water

I western North American Alpine Tundra

[l Western North American Cool Semi-Desert Scrub & Grassland

I western North American Grassland & Shrubland

I Western North American Interior Chaparral

. Western North American Interior Flooded Forest

I Western North American Pinyon - Juniper Woodland & Scrub

I Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 42. Relative frequency of vegetation associations at the locality point locations for LALU.

Vegetation associated with LALU localities was mostly within North American Warm Desert Scrub
& Grassland, with Western North American Cool Semi-Desert Scrub & Grassland, and Land Use
and Development as the second and third most common (Figure 42).

The ensemble model was comprised of 20 Random Forest models and 20 GBM models. The
vegetation based model was composed of 20 RF models.



PEAL — White-margined Beardtongue
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Figure 43. PEAL Ensemble Model for the base environmental layers.

Figure 44. PEAL Ensemble Model for the base enviroonmental layers (Left) compared with the
vegetation layer model (Right).

Models for White-margined Beardtongue differed considerably between the base models, and
the models including the vegetation layer (Figure 44). The models including vegetation as a
predictor layer showed a much more restrictive predicted habitat area, with habitat more
restricted to the area surrounding the I-15 Corridor, concordant with the localities (Figure 43),
and reduced area predicted around the perimeter of Las Vegas. The base model had high
performance across all algorithms - where AUC, BI, and TSS all had high values with minimal



losses between training and testing data (Table 56). The Bl score for the Random Forest model
built with the testing data was generally lower than other models (Table 56). Performance for
the models including vegetation was high for all performance measures tested (Table 57).

Table 56. Performance metrics for PEAL. AUC (Area under Curve), Bl - (Boyce Index), TSS (true

skill statistic) were each calculated independently for Training and Testing data and using all
points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 0.98 1 0.97 0.96 0.97 0.98 0.94 0.97
RF 0.99 0.98 0.99 0.94 0.81 0.91 0.92 0.91 0.92
GAM 1 0.98 1 0.96 0.79 0.97 1 0.94 0.99
MX 0.98 0.98 0.98 0.97 0.97 0.97 0.87 0.94 0.88
GBM 1 0.98 0.99 0.94 0.84 0.98 0.96 0.92 0.95

Table 57. Performance metrics for PEAL for models including vegetation. AUC (Area under
Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for
Training and Testing data and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.98 1 0.96 0.99 0.99 1 0.93 0.99
RE 1 0.99 1 0.98 0.98 0.99 1 0.95 0.99
GBM 1 0.96 0.99 0.85 0.98 0.94 1 0.93 0.99

Depth to bedrock, winter precipitation, and CV of winter precipitation had generally high
contributions towards all models (Table 58). The MaxEnt model was again largely dependent on
a single variable. The other models were more dependent on all variables included in modeling.
Vegetation had good performance in the augmented models, with good representation across all
variables for the RF model, but with a low reliance of Vegetation. The GBM models had no
influence of vegetation, but were driven by the CV of winter precipitation , depth to bedrock
and, sand content (Table 59).

Table 58. Relative importance of the input variables used in PEAL base models.

Variable GBM RF GA< MX
Depth to bedrock 5.6 13.4 25.6 0

Clay 23 14.3 9.9 7.8
Extreme Min Temp 0.3 17.4 17.4 1.6
Slope 0 4.6 14.9 1.8
Winter Precip 41.2 23.9 14 1.1
CV Winter Precip 29.8 26.4 18.2 87.7

Table 59. Relative importance of the input variables used in PEAL models with vegetation.

Variable GBM RF
Depth to bedrock 31.8 181
Sand 151 124
Extreme Min Temp 0.8 165
Slope 0 3.3
Winter Precip 2.3 19
CV Winter Precip 50 286
0 2.2

Vegetation



Vegetation associated with PEAL

Vegetation Type

I Agricultural & Developed Vegetation

B californian Forest & Woodland

. Developed, Open Space - Low Intensity

I Land Use and Development

B North American Warm Desert Scrub & Grassland

B North American Western Interior Brackish Marsh, Playa & Shrubland

I Rocky Mountain Forest & Woodland

- Southwestern North American Warm Desert Freshwater Marsh & Bosque
W water

ll Western North American Alpine Tundra

[l Western North American Cool Semi-Desert Scrub & Grassland

I Western North American Grassland & Shrubland

- Western North American Interior Chaparral

[ western North American Interior Flooded Forest

I Western North American Pinyon - Juniper Woodland & Scrub

Il Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 45. Relative frequency of vegetation associations at the locality point locations for PEAL.

PEAL localities were associated with North American Warm Desert Scrub & Grassland and
Western North American Cool Semi-Desert Scrub & Grassland, with a fraction in Land Use and
Development (Figure 45).

The ensemble model was comprised of 18 Random Forest models, 3 GAM, 11 MaxEnt, and 9
GBM models. There were 20 RF and 20 GBM included in the ensemble for the vegetation
enhanced model.



TOBE — Bendire’s thrasher

TOBE Ensemble Model

X

e TOBE iNaturalist Locations
© TOBE Original Locations
e TOBE 2023 Locations

TOBE Habitat model
0.97
0.01

0 25 50 km A
[

Figure 47. TOBE Ensemble Model for the vegetation inclusion model.



The Model for Bendire's thrasher with vegetation showed a increased habitat prediction area,
especially in the northeastern portion of Clark County (Figure 46 and 47). The models had
excellent performance, with only the GAM model showing lower performance for the Boyce
index only for the testing dataset. The other models had high AUC, Bl and TSS scores, with little
drop from training to testing (blind) data (Table 60). The models including vegetation also
indicated high performance, with good AUC, TSS and Bl scores for training data. The scores for
the Boyce index did drop for the testing dataset (Table 61).

Table 60. Performance metrics for TOBE. AUC (Area under Curve), Bl - (Boyce Index), TSS (true
skill statistic) were each calculated independently for Training and Testing data and using all
points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training Bl_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 0.99 0.95 0.99 0.96 0.92 0.98 0.93 0.77 0.88
GAM 0.96 0.91 0.95 0.95 0.57 0.95 0.82 0.75 0.79
RF 1 0.96 1 1 0.97 1 0.99 0.81 0.95
MX 0.94 0.93 0.93 0.98 0.75 0.99 0.74 0.77 0.74
GBM 0.99 0.95 0.98 0.92 0.86 0.95 0.91 0.75 0.87

Table 61. Performance metrics for TOBE with vegetation included. AUC (Area under Curve), Bl -
(Boyce Index), TSS (true skill statistic) were each calculated independently for Training and
Testing data and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 0.98 1 0.91 0.78 0.93 1 0.85 0.97
RF 1 0.99 1 0.9 0.4 0.97 1 0.92 0.98
GBM 1 0.95 1 0.96 0.71 0.87 1 0.85 0.94

The flow accumulation index, which gives an index of topographic position in the landscape had
the lowest performance, but still contributed 10% toward the RF model. (Table 62). The higher
performing variables were winter precipitation, and its variance, while the other variables
contributed relatively evenly across models, with the exception of the distance to cliffs, which
performed well in the GAM models. The MaxEnt model was largely a single variable model, using
only the CV of winter precipitation. For the models including vegetation the RF model had a good
inclusion of all variables, including the vegetation layer at 41% and 13% for the GBM and RF
models respectively (Table 63). The GBM models had influences from most variables, with three
variables that had low importance, while the RF models included contributions from all variables
(Table 63).

Table 62. Relative importance of the input variables used in modeling for TOBE.

Variable GBM RF GAM MX
Dist to cliffs 0 6.8 18.6 0

NDVI Amplitude 2.5 11.8 16.6 0.3
NDVI Max 8.2 13.5 4.3 0.1
Winter Precip 42.9 21.9 19.7 0.2
CV Winter Precip 24.2 20.6 22 96.7
Slope 17.3 14.7 10.8 2.6
Flow Accum 4.9 10.7 8 0



Table 63. Relative importance of the input variables used in modeling for TOBE.

Variable

Dist to cliffs
NDVI Amplitude
NDVI Max
Winter Precip
CV Winter Precip
Slope

Flow Accum

Vegetation

The ensemble model was comprised of 13 Random Forest models,12 GBM, 8 GAM, and 7
MaxEnt models. For the models with vegetation included there were 20 RF and 20 GBM models

contributing.

GBM
0.6

12
2
235
2.4
14.6
14.2
415

RF
6.4

8.8
12
19.6
10.5
14.1
15.3
13.3

Vegetation associated with TOBE

Vegetation Type

I Agricultural & Developed Vegetation

I californian Forest & Woodland

B Developed, Open Space - Low Intensity

I Land Use and Development

I North American Warm Desert Scrub & Grassland

Il North American Wester Interior Brackish Marsh, Playa & Shrubland
B Rocky Mountain Forest & Woodland

I southwestern North American Warm Desert Freshwater Marsh & Bosque
B woter

[l Western North American Alpine Tundra

[l Western North American Cool Semi-Desert Scrub & Grassland

[ Western North American Grassland & Shrubland

I western North American Interior Chaparral

I western North American Interior Flooded Forest

I Western North American Pinyon - Juniper Woodland & Scrub

Il Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 48. Relative frequency of vegetation associations at the locality point locations for TOBE.

Vegetation associated with TOBE localities was predominantly Western North American Cool
Semi-Desert Scrub & Grassland, and  North American Warm Desert Scrub & Grassland (Figure

48).



TOLE — Le Conte’s thrasher
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Figure 50. Ensemble Models for TOLE including the vegetation layer.



The Leconte’s Thrasher model had a similar predicted habitat footprint for both the base and
vegetation augmented models, but with differences in the northeastern portion of the county
where the distribution was more limited in the vegetation augmented model (Figures 49 and 50).
The models for the base had high overall performance - where AUC, BI, and TSS all had high
values with minimal losses between training and testing data with the exception of the GBM
model for the testing dataset (Table 64). The GAM and model had lower Bl scores than other
algorithms. For the models including vegetation only RF models performed well enough to be
i8ncluded. The performance scores were higher than the base models, and metrics were high
across the board (Table 65).

Table 64. Performance metrics for TOLE. AUC (Area under Curve), Bl - (Boyce Index), TSS (true

skill statistic) were each calculated independently for Training and Testing data and using all
points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_AlIl TSS_Training TSS_Testing TSS_All

EM 1 0.94 0.99 0.91 0.71 0.96 0.95 0.73 0.9
GAM 0.96 0.9 0.95 0.79 0.74 0.83 0.78 0.68 0.76
RF 1 0.95 0.99 0.94 0.75 0.98 0.99 0.72 0.94
MX 0.95 0.91 0.95 0.92 0.84 0.93 0.78 0.67 0.76
GBM 0.99 0.94 0.98 0.92 0.51 0.96 0.91 0.7 0.87

Table 65. Performance metrics for TOLE with vegetation models included. AUC (Area under
Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for
Training and Testing data and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.96 0.99 0.98 0.89 0.97 1 0.81 0.96

RE 1 0.96 0.99 0.98 0.89 0.97 1 0.81 0.96

The MaxEnt model converged on two variables, the GBM on three (but largely driven by the CV
of winter precipitation), and the RF and GAM were more evenly balanced. (Table 66). CV Winter
Precip had high contributions across all models, and all variables had higher than 10%
contribution for at least one of the algorithms. For the models including vegetation - the RF
model had several variables that showed high importance, and moderate importance to the
vegetation layer (Table 67).

Table 66. Relative importance of the input variables used in modeling for TOLE.

Variable GBM RF GAM MX
Flow Accum 18.7 20.4 7.9 0
NDVI Length of Season 0 6.7 15.8 0
CV Winter Precip 73 39.2 45.2 234
CV Average Spring Max Temp 0 16.3 14.5 76.2

Slope 8.4 17.4 16.6 0.4



Table 67. Relative importance of the input variables used in modeling for TOLE with the
vegetation layer included.

Variable RE
Flow Accum 15.10
NDVI Length of Season 6.72
Winter Precip 8.06
CV Winter Precip 29.69
CV Average Spring Max Temp 13.56
Slope 19.82
Vegetation 7.05

Vegetation associated with TOLE

Vegetation Type
I Agricultural & Developed Vegetation

. Californian Forest & Woodland
- Developed, Open Space - Low Intensity
| I tand Use and Development
I North American Warm Desert Scrub & Grassland
I North American Western Interior Brackish Marsh, Playa & Shrubland
B Rocky Mountain Forest & Woodland

. Southwestern North American Warm Desert Freshwater Marsh & Bosque

B water

Il Western North American Alpine Tundra

. Western North American Cool Semi-Desert Scrub & Grassland

. Western North American Grassland & Shrubland

I western North American Interior Chaparral

. Western North American Interior Flooded Forest

. Western North American Pinyon - Juniper Woodland & Scrub

. Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 51. Relative frequency of vegetation associations at the locality point locations for TOLE.

Vegetation associated with the TOLE localities was predominantly North American Warm Desert
Ruderal Grassland and North American Warm Desert Scrub & Grassland, with Western North
American Cool Semi-Desert Scrub & Grassland, Land Use and Development, and several other
associations at lower prevalence (Figure 51).

The ensemble model was comprised of 19 Random Forest models, 3 GAM, 4 MaxEnt, and 14
GBM models contributing. The vegetation based model had 20 RF included in the ensemble.



VIBE — Arizona Bell’s vireo

Figure 52. Ensemble Model comparing models with vegetation (right) and base environmental
layers (Left) for VIBE.

The Arizona Bell’s Vireo models had markedly different footprints of predicted habitat between
the base models, and those including the vegetation layer, where the models including
vegetation showed a reduced area of predicted habitat relative to the standard modeling using
base layers alone (Figure 52), where habitat was more restricted tightly around riparian areas in
Lake Mead, and some upland habitat predicted around the spring range. The models had high
performance across all algorithms (Table 68). For the base model, training and testing
performance remained high across all performance metrics, indicating good generalizability
(Table 68). Similarly - the models including vegetation had excellent performance for both
testing and training data (Table 69).

Table 68. Performance metrics for VIBE. AUC (Area under Curve), Bl - (Boyce Index), TSS (true

skill statistic) were each calculated independently for Training and Testing data and using all
points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All

EM 1 0.97 0.99 0.97 0.89 0.97 0.94 0.87 0.93
GAM 0.98 0.96 0.98 0.97 0.82 0.95 0.88 0.84 0.87
RF 1 0.97 1 0.99 0.83 0.98 1 0.86 0.97
MX 0.97 0.97 0.97 0.99 0.94 0.99 0.86 0.87 0.86
GBM 0.99 0.97 0.99 0.96 0.85 0.97 0.95 0.9 0.94

Table 69. Performance metrics for VIBE with the vegetation layer included. AUC (Area under
Curve), Bl - (Boyce Index), TSS (true skill statistic) were each calculated independently for
Training and Testing data and using all points.

Model AUC_Training AUC_Testing AUC_AIl BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.96 1 0.95 0.69 0.96 1 0.89 0.98

RF 1 0.97 1 0.99 0.81 0.98 1 0.85 0.97
GBM 1 0.94 0.99 0.99 0.9 0.97 0.96 0.78 0.92



The variable contributions indicated relatively high inclusion of all variables, with Winter
Precipitation contributing the least (Table 70). The GBM model consisted largely of only three
variables, while the other three were more balanced across the board (Table 70). Vegetation
contributed little toward variable importance for either the GBM algorithm, and only moderately
for RF (Table 71). Both the GBM and RF models showed importance across many inputs, and
Average Max Temperature Spring Max Temperature, Silt Content, and Topographic index were
among the highest contributing variables for both modeling algorithms (Table 71).

Table 70. Relative importance of the input variables used in modeling for VIBE.

Variable GAM RF MX  GBM
Ave Max Temp 0.6 16 10.9 7.7
Average Spring Max Temp 11.2 147 457 7.8
NDVI Amplitude 244 142 03 1.2
Winter Precip 22.2 8.1 2 0
Slope 191 84 6.1 0
TPX 12.3 10 7.8 1
Silt 103 286 271 823

Table 71. Relative importance of the input variables used in modeling for VIBE including
vegetation.

Variable GBM RF
Ave Max Temp 12 134
Average Spring Max Temp 129 141
NDVI Amplitude 83 1138
Winter Precip 0 9.7
Slope 0 9.9
TPX 32.6 158
Silt 33.6 183

Vegetation 0.6 7



Vegetation associated with VIBE

Vegetation Type

I Agricultural & Developed Vegetation

I californian Forest & Woodland

. Developed, Open Space - Low Intensity

I Land Use and Development

B North American Warm Desert Scrub & Grassland

B North American Western Interior Brackish Marsh, Playa & Shrubland

I Rocky Mountain Forest & Woodland

- Southwestern North American Warm Desert Freshwater Marsh & Bosque
W water

Il Western North American Alpine Tundra

[l Western North American Cool Semi-Desert Scrub & Grassland

I Western North American Grassland & Shrubland

. Western North American Interior Chaparral

[ western North American Interior Flooded Forest

I Western North American Pinyon - Juniper Woodland & Scrub

Il Western North American Temperate Freshwater Marsh, Wet Meadow & Shrubland

Figure 53. Relative frequency of vegetation associations at the locality point locations for VIBE.

Vegetation associated with Bells Vireo localities had among the most diverse of all habitat types
(Figure 53). The largest was North American Warm Desert Scrub & Grassland .

The ensemble model was comprised of 11 Random Forest models, 10 GBM models, 9 GAM and
11 MaxEnt models, with an uncharacteristically even contribution among all algorithms. The
vegetation based models were an ensemble of 20 RF and 10 GBM models.
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