Introduction

This project created species habitat models for Golden Eagle bird locations, and Golden
Eagle nest locations. These models were incorporated into the species accounts previously
produced. All bird and nest localities and covariate Geographic Information System (GIS)
layers used in modeling, as well as final modeling products are being submitted with this
report.

Modeling Methods

Species data

This report summarizes habitat distribution modelling conducted for Golden Eagles, and
Golden Eagle nests that occur within Clark County, NV and are covered under the Multi-
Species Habitat Conservation Plan. To obtain point localities we searched available public
databases (the Global Biodiversity Information Facility - http://www.gbif.org/; Biodiversity
Information Serving Our Nation (BISON), http://bison.usgs.gov/; VertNet,
http://vertnet.org/; iNaturalist, http://www.inaturalist.org/;and e-bird, http://ebird.org).
When available these data were supplemented by species observation records provided by
Clark County, the Nevada Department of Wildlife (NDOW), the Nevada Natural Heritage
Program (NNHP), the National Park Service (NPS), the U.S. Forest Service (USFS), the
Bureau of Land Management (BLM), the Nature Conservancy (TNC), and other
independent contractors under the MSHCP. Observations were visually assessed for
accuracy prior to model fitting, and duplicate records and / or those without sufficient
locality information were removed. We separated the point sets based on whether they
were indicated as a nesting location, or a general sighting location where eagles may have
been observed foraging or in flight.

We consulted the species writeup from earlier modeling and species accounts (included
below), and we then selected environmental covariates describing the range of
environmental conditions necessary for establishment, growth, reproduction, and survival.
Habitat distribution models were based upon biologically relevant variables for which we
had a priori hypotheses relating to each Golden Eagles’ life-history. This approach reduces
the risk of spurious associations and potentially results in models with greater biological
relevance (Austin 2002; Guisan and Thuiller 2005). Based on these criteria, we selected
approximately 10-15 environmental covariates to include in habitat models for each Golden
Eagles, and Golden Eagle nests, that were thought to influence their geographic
distributions, and conduced model selection to reduce these to 10 input variables..

Environmental covariates

We evaluated a range of environmental covariates that might effectively discriminate
habitat for multiple species within Clark County, including spatial layers available from the
County, previously published datasets, climatic interpolations (Hamann et al. 2013; Wang
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et al. 2016), satellite-based vegetation indices from the USGS Eros Center
(http://phenology.cr.usgs.gov/), and topographic features derived from a Digital Elevation
Model (USGS National Elevation Dataset; http://ned.usgs.gov/). In total, we derived 25
covariate layers at a 250m resolution for potential inclusion in habitat distribution models
(Table 1). These layers included climatic averages and extremes for precipitation and
temperature, topographic features, and remotely-sensed vegetation indices (e.qg.,
Normalized Difference Vegetation Index). Environmental covariates were assessed for
collinearity prior to model fitting, and variables that showed strong correlations (r > 0.75)
were not included within the same models for a given species.

Quantitative statistical modelling methods

The largest source of variability in habitat distribution model output stems from the type of
algorithm used to generate predictions (e.g., Watling et al. 2015). For this reason, we used
an ensemble modeling approach that incorporated three different algorithms: generalized
additive models (GAM; using the “mgcv” method Wood 2006), random forests (RF;
implemented in the R package “randomForest,” Liaw and Wiener 2002), and MaxEnt
(version 3..4.1, Phillips et al. 2006) ; all executed from the “biomod2” package in R,
Thuiller et al. 2009). The use of multi-algorithm ensembles renders predictions less
susceptible to the biases, assumptions, or limitations of any individual algorithm, while
broadening the types of environmental response functions that can be identified (Araujo
and New 2006). Moreover, empirical evaluations have found GAM, RF, and MaxEnt to be
consistently strong performers among habitat distribution modeling algorithms (Franklin
2010). All modeling was conducted in R version 3.5.3 (R Core Team 2019).

True absence points were not available for Golden Eagles, or their nests, at this time. For
this reason, all models were fit using randomly generated background points (pseudo-
absences). Random selections of background points are already implemented in MaxEnt
software, and are also considered a reliable method for regression techniques including
GAM (Wisz and Guisan 2009; Barbet-Massin et al. 2012). Background points were
randomly selected from within the modelling extent (Barbet-Massin et al. 2012) from all
grid cells where the study species was not present. Following the recommendations in
Barbet-Massin et al. (2012), GAM models and RF models were fit with an equal number of
presences and background points (Barbet-Massin et al. 2012).

To keep models interpretable and to improve their generalization across the study area, we
also did not include interaction terms. Because presence points tended to be spatially
aggregated, which can lead to substantial bias in model predictions, we first rasterized the
presence points to the modeling resolution (i.e., such that only one presence point could
occur within each grid cell) and subsequently applied a geographically-weighted
resampling procedure in which a maximum of three observations could be sampled from
cells on a uniform grid at a spatial resolution 10 times larger than the modelling extent
(e.g., 2.5 km? for a 250 m? model, and 10 km? for a 1 km? models). This systematic grid
sampling approach for spatial thinning of presence points can be effective at reducing
spatial bias under a variety of conditions (Fourcade et al. 2014). To further reduce bias in
our predictions, we used cross-validations to fit and evaluate all habitat models. In this
process, each algorithm was fit across 50 samples of randomly selected, spatially thinned
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presence points, with a 20% random sample (without replacement) withheld for model
evaluation at each iteration (i.e., 80 % of presence points were used in model fitting, and
20% in model evaluation). Background points were also randomly drawn for each cross-
validation.

Metrics of model prediction accuracy were calculated based on the evaluation data for each
of the 50 cross-validation runs, and subsequently averaged across runs. Performance
metrics included several threshold-independent measures: AUC (the area under the receiver
operating characteristic; Fielding and Bell 1997), the Boyce Index (BI; Boyce et al. 2002;
Hirzel et al. 2006), and the True Skill Statistic (TSS; Allouche et al. 2006). TSS takes into
account both omission and commission errors and is insensitive to data prevalence
(Allouche et al. 2006).

Habitat distribution models vary in their ability to effectively discriminate different classes
of habitat along the full range of habitat suitability values (0 — 1; Hirzel et al. 2006). To
evaluate this property, we calculated the continuous Predicted / Expected (P/E) ratio curves
based on the BI (Hirzel et al. 2006) using the ecospat package (v 3.0) in R. These curves
reflect how well each model deviates from random expectation, and inform the
interpretation of biologically meaningful suitability categories by indicating the effective
resolution of suitability scores for each model (i.e., the model’s ability to distinguish
different classes of suitability; Hirzel et al. 2006).

To generate predictive layers of habitat suitability for each Golden Eagles, and their nests,
we selected the top candidate models from each algorithm, based upon model performance
metrics across cross-validation runs (AUC and TSS). Models were selected that
consistently performed highest across different metrics. Raster surfaces representing each
of the selected candidate models were generated by averaging model predictions across the
50 cross-validation runs, such that each model’s prediction surface corresponded directly to
its average performance scores. This procedure also limits the influence of sampling bias
on individual model predictions. Ensemble predictions for individual algorithms were
generated by taking the weighted average among candidate models for each algorithm type
(i.e., one ensemble prediction each for GAM, RF, and MaxEnt models), with the weights
determined by TSS scores. Layers representing the standard error of the overall ensemble
habitat suitability layer were calculated as the standard deviation in model predictions
across all candidate models, divided by the square root of the number of candidate models
considered. The same approach was used to derive standard error layers within each
individual algorithm type. This ensemble approach was conducted using the modeling
platform biomod2 in R. (Thuiller 2003).

Quantitative model interpretation

To facilitate biological interpretations of the ensemble models, we calculated the relative
importance of environmental predictors across candidate models for each algorithm in
biomod2.

To illustrate the shape of the relationships between predicted habitat suitability and
important environmental covariates, we derived partial response curves for the top 4
environmental parameters for each of the three algorithms. Partial response curves show



the predicted habitat suitability across a single covariate’s range of values, while holding
all other covariates at their mean value (e.g., Elith et al. 2005). To indicate the overall
distribution of covariate values across the study region, we overlaid the response curve
plots with histograms representing the prominence of each environmental covariate
throughout the study area. These histograms were calculated from the combined presence
and pseudo absence locations.

Ecosystem and Impact Assessment Calculations.

Using the habitat models that were produced during this project, the ensemble model was
reclassified into categorical indices of suitability as: 0-0.33 = Low, 0.33 — 0.66 = Medium,
and 0.66 — 1 = High. Shapefiles provided by the Clark County Desert Conservation
Program (DCP) representing Impacts, Conservation layers (ACECs etc.), and Disturbed
layers (e.g. urban areas, power plants, landfills, etc.) were converted to rasters at a 30m cell
size as these layers had inconsistencies in topography that hindered habitat intersects. The
categorical Ecosystem raster provided by the Clark County Desert Conservation Program
(DCP) developed by Heaton et al. (2011) was used for ecosystem intersections with the
categorical habitat rasters. For each of the High, Medium and Low habitat categories for
each species, the intersection of the habitat category with the Impact and Ecosystem
assessment layers was calculated using standard raster algebra techniques. Tables and
summaries of these intersections are included in the model writeups.

Table 1. Environmental covariate names and their source.

Name

Ave Max
Temp

Ave Min
Temp

Clay

Coarse
frags
CV Max
Temp

CV Min
Temp

Dist to cliffs

Extreme
Max Temp

Extreme
Min Temp

Source

Average of the maximum monthly temperatures for a 30-year normal period between 1988 and
2018 calculated from monthly PRISM data at 800m resolution and downscaled to a 250 m
resolution with bicubic spline interpolation using gdal-warp in python.

Average of the maximum monthly temperatures for a 30-year normal period between 1988 and
2018 calculated from monthly PRISM data at 800m resolution and downscaled to a 250 m
resolution with bicubic spline interpolation using gdal-warp in python.

Downloaded from the Soil Grids 250m project. Hengl et al. 2017

Downloaded from the Soil Grids 250m project. Hengl et al. 2017

Coefficient of Variation of the maximum monthly temperatures for a 30-year normal period
between 1988 and 2018 calculated from monthly PRISM data at 800m resolution and
downscaled to a 250 m resolution with bicubic spline interpolation using gdal-warp in python.
Coefficient of Variation of the maximum monthly temperatures for a 30-year normal period
between 1988 and 2018 calculated from monthly PRISM data at 800m resolution and
downscaled to a 250 m resolution with bicubic spline interpolation using gdal-warp in python.
Distance of Cliffs - from Inman et al. 2014

Extreme Maximum of monthly temperatures for a 30-year normal period between 1988 and
2018 calculated from monthly PRISM data at 800m resolution and downscaled to a 250 m
resolution with bicubic spline interpolation using gdal-warp in python.

Extreme Minimum of monthly temperatures for a 30-year normal period between 1988 and 2018
calculated from monthly PRISM data at 800m resolution and downscaled to a 250 m resolution
with bicubic spline interpolation using gdal-warp in python.



Flow Accum

NDVI
Amplitude

NDVI
Length of
Season
NDVI Max

Sand
Silt
Slope

Start of
Season
(day)
Winter
Precip

CV Winter
Precip

Surface
roughness
Average
Spring Max
Temp

CV Average
Spring Max
Temp
Percent
washes
Absolute
depth to
bedrock

Inman et al. 2014

USGS Phenology network - https://www.usgs.gov/land-
resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-
science_center_objects=0#qt-science_center_objects

USGS Phenology network - https://www.usgs.gov/land-
resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-
science_center_objects=0#qt-science_center_objects

USGS Phenology network - https://www.usgs.gov/land-
resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-
science_center_objects=0#qt-science_center_objects

Downloaded from the Soil Grids 250m project. Hengl et al. 2017

Downloaded from the Soil Grids 250m project. Hengl et al. 2017

Calculated from USGS National Map. https://www.usgs.gov/core-science-systems/national-
geospatial-program/national-map

USGS Phenology network - https://www.usgs.gov/land-
resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-
science_center_objects=0#qt-science_center_objects

Average of the cumulative annual winter precipitation (October - March) for a 30-year normal
period between 1988 and 2018 calculated from monthly PRISM data at 800m resolution and
downscaled to a 250 m resolution with bicubic spline interpolation using gdal-warp in python.
Coefficient of Variation for the cumulative annual winter precipitation (October - March) for a
30-year normal period between 1988 and 2018 calculated from monthly PRISM data at 800m
resolution and downscaled to a 250 m resolution with bicubic spline interpolation using gdal-
warp in python.

Inman et al. 2014

Average of the maximum monthly temperatures for March - May for a 30-year normal period
between 1988 and 2018 calculated from monthly PRISM data at 800m resolution and
downscaled to a 250 m resolution with bicubic spline interpolation using gdal-warp in python.
Coefficient of Variation for the maximum monthly temperatures for a 30-year normal period
between 1988 and 2018 calculated from monthly PRISM data at 800m resolution and
downscaled to a 250 m resolution with bicubic spline interpolation using gdal-warp in python.
Calculated from USGS National Map. https://www.usgs.gov/core-science-systems/national-
geospatial-program/national-map

Downloaded from the Soil Grids 250m project. Hengl et al. 2017

Species Account

Golden Eagle (Aquila chrysaetos)

As top avian predators, there is interest in Golden Eagles (Aquila chrysaetos) globally.

Successful conservation and education efforts have formed around this iconic species since

the time when they were shot for sport on their annual migrations in the eastern United
States. While those types of losses have certainly been reduced, new threats have
developed with the recent national thrust to create greater amounts of renewable energy.
Since about 2010 there are re-doubled efforts to understand the status of Golden Eagle
populations in North America and learn about their life histories and ecology on a



continental basis. Golden eagles in the hot desert regions of the southwestern United States
are among the least known populations in North America. The Desert Renewable Energy
Conservation Plan (DRECP 2015) of southern California has invested some resources to
improve our understanding of this species. Much more work will be required to better
understand this far-ranging species.

Species Status
U.S. Fish and Wildlife Service Endangered Species Act: No Status
Migratory Bird Treaty Act: Protected
Bald and Golden Eagle Protection Act: Protected
U.S. Bureau of Land Management (Nevada): Sensitive
U.S. Forest Service (Region 4): No Status
State of Nevada: Protected (NAC 503.050.1)
NV Natural Heritage Program: Global Rank G5, State Rank S4
NV Wildlife Action Plan: Species of Conservation Priority
IUCN Red list (v 3.1): Least Concern
CITES: Appendix ii

Range

The distribution of Golden Eagles is circumpolar in the northern hemisphere (Bent 1961).
They generally occupy relatively open areas that are not densely forested. Similarly,
expansive grassland biomes are often suitable for establishing breeding territories where
nesting substrate is present (e.g. cliffs or trees), and may be used by wintering eagles as
well (Watson 2010). Currently, Golden Eagle populations are most robust west of the Great
Plains with additional populations in northeastern Canada and isolated locations in the
eastern U.S. (Kochert et al. 2002, DeL.ong 2004). There are six subspecies of Golden Eagle
worldwide, however only A. c. canadensis occurs in North America. Golden eagles occupy
mostly remote open country that is isolated from human activities. Foraging habitats for
nesting eagles include many North American habitat types including: the fringes of Arctic
habitats; mountains of the Pacific northwest; the taiga of North America; foothills and
shortgrass steppe east of the Rocky Mountains; cold deserts of the Great Basin and
Colorado Plateau; the Mojave and Sonoran hot desert ecoregions, mountains and coastal
areas of California and Mexico; and mountains of eastern North America (Watson 2010,
Longshore In Prep., Daniel Driscoll - AERIE, personal communication). Wintering Golden
Eagles use these above habitat types when prey is available year-round and climatic
conditions allow. They may also parts of the Great Plains, but in that region nesting is
limited by lack of appropriate nesting substrate. In North America nesting substrates
usually include cliffs and trees.



Habitat Models
Habitat Model — (All localities)

While the three model algorithms generally predicted similar habitat arrangements throughout the
County, the Random Forest models generally predicted more habitat, organized in less cohesive
patches, than the other models, while the MaxEnt models tended to retain moderate values where
other models predicted lower values (Figure 1). Key areas of similarity among models in the
County included the Sheep, Spring, Bird Spring, and Highland ranges, the McCullough and Lucy
Gray mountains. Areas not well supported as habitat were large patches in the Mormon Mesa,
Moapa Valley, Pahrump, lower elevation portions of Gold Butte, and the Lake Mead/Colorado
river drainage (Figure 1). Important differences in predicted habitat for this species occur in the
Las Vegas valley, where the MaxEnt model predicts a patch of high suitability, while the others do
not (Figure 1).

The Ensemble model had high performance relative to other models, scoring the highest on all of
the performance metrics AUC and BI, and with a similar TSS score (calculated on the blind testing
dataset) as the RF model (Table 2). Relative to the other models, the MaxEnt model had poor
performance on the AUC and TSS metrics. Overall AUC performance was moderate, with no
models performing above 0.8, while Bl scores were relatively high. The GAM and MaxEnt models
shared the top four influential environmental variables, where the CV and Average of Maximum
temperature, Extreme Maximum temperature, and the sand component of the soils were the largest
contributors (Table 3). The RF model shared only the CV of Average of Maximum temperature in
its top four contributing variables, and was more influenced by slope, minimum temperatures, and
clay content. The standard error was relatively low throughout the County, where only the GAM
model had values approaching (0.05 — which is not a value indicating large disagreement among
models) which were located in small patches near Mt. Charleston (Figure 2). The Continuous
Boyce Indices showed good model performance in all algorithms (Figure 3). The MaxEnt curve
indicated some values of higher performance where point density was only moderate, indicating
less discrimination between high and low habitat (Figure 4), this is likely due to the lack of lower
suitability scores in areas with fewer points that retained moderate suitability scores (e.g. 0.5,
Figure 1).

Table 2. Model performance values for Aquila chrysaetos models giving Area under the Receiver
Operator Curve (AUC), Boyce Index (BI), and True Skill Statistic (TSS) for the ensemble model,
and the individual algorithms for the testing data sets. PRBE is given as the “precision recall break-
even point” - threshold value for the ensemble model

Model AUC BI TSS PRBE

Ensemble 0.77 0.98 0.43 0.52
GAM 0.75 0.98 0.39
Random Forest 077 0.91 0.44
MaxEnt 0.72 0.95 0.34



Table 3. Percent contributions for input variables for Aquila chrysaetos for models using GAM,
Maxent and Random Forest algorithms. The top 4 contributing variables are highlighted, and
response curves for these variables within each algorithm are given in the corresponding sections
below

Variable GAM RF MaxEnt
Ave Max Temp 12.6 6.7 0
Ave Min Temp 6.7 53 2.5
Average Spring Max Temp 12.7 3.5 21.7
CV Average Spring Max Temp 21 14.7 39.2
Clay 3.2 10 0
Extreme Max Temp 17.4 9 18.7
Extreme Min Temp 7.9 12.2 1
Sand 14.1 9 11.7
Silt 3.1 9.7 1.7

Slope 1.3 20 3.4
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Figure 1. SDM maps for Aquila chrysaetos model Ensemble (upper left), and for averaged models
of each of three modeling algorithms used (GAM - upper right, Random Forest — lower left,
MaxEnt - lower right). Hotter colors indicate higher predicted habitat values, and black circles
indicate the presence points used in training and testing the models.
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Figure 2. Standard error maps for Aquila chrysaetos models for each of three modeling algorithms
used (GAM - upper right, Random Forest — lower left, MaxEnt - lower right), and an ensemble
model averaging the three (upper left).
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Figure 3. Graphs of Continuous Boyce Indices [CBI] for Aquila chrysaetos models for the
ensemble model prediction (upper left) and for each of three modeling algorithms used (GAM -
upper right, Random Forest — lower left, and MaxEnt - lower right).

General Additive Model

The top 4 contributing environmental layers were Average Maximum Temperature and its
Coefficient of Variation, Extreme Maximum Temperature, and Sand component of the soil
collectively accounting for 65% of total model contribution (Table 3). Model scores were
higher in areas with cooler Extreme Max Temperatures (typically in the summer months,
where the higher temperatures are well above 40 °C) but with warmer Spring Maximum
Temperatures (peaking above 30 °C, Figure 4). Model predictions peaked at temperature
CV’s slightly higher than the mean environmental values and remained relatively higher
thereafter. Habitat was also predicted to be higher in areas with a much lower Sand content
than found in the County generally, with a strong negative response as sand content
increased (Figure 4). This algorithm had very low standard error values, indicating similar



predictions among the 50-model cross-validation runs (Figure 2). As stated above, there
was only 1 patch of moderate error (0.05) located near Mount Charleston.
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Figure 4. GAM partial response curves for the top 4 variables in the Aquila chrysaetos model
overlaid over distribution of environmental variable inputs in the study area. Histograms represent
the range of each environmental variable across the x-axis, and predicted dependence relative to

habitat suitability values are on the y-axis.

MaxEnt Model

The MaxEnt models relied heavily on the same four top variables as those in the GAM
models contributing 91% of total model contribution (Table 3). This model also had very
similar response curves among algorithms to the GAM model indicating relatively robust
model selection (Figure 4, Figure 5). The predicted response for the CV of Average Spring
Temperature showed the only difference, where there was no decrease in predicted
suitability at high values, but rather a threshold response (Figure 5).
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Figure 5. Partial response curves for the top environmental variables included in the MaxEnt
ensemble model for Aquila chrysaetos. Histograms represent the range of each environmental
variable across the x-axis, and predicted dependence relative to habitat suitability values are on the

y-axis.
Random Forest Model

The Random Forest model was largely driven by Slope, CV of Average Maximum Spring
Temperature, Extreme Minimum Temperature, and soil Clay content (Table 3). The
collective model influence was 57%, where additional influence was proved by several
other input variables (Table 3). Slope indicated higher habitat suitability at both high and
low values, which could indicate habitat predictions for the animals use of different habitat
resources those for either nesting sites or foraging sites, as both types of data are present in
this model (Figure 6). The temperature variables indicated higher predicted habitat toward
areas with warmer Spring Maximum Temperatures, and higher variability in Average
Spring Maximum Temperatures. Habitat predictions relative to soil Clay content generally
mapped the average available values in the County, remaining moderate at elevated values

(Figure 6).
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Figure 6. Partial response curves for the environmental variables included in the Random Forest
ensemble model for Aquila chrysaetos. Histograms represent the range of each environmental
variable across the x-axis, and predicted dependence relative to habitat suitability values are on the
y-axis.

Model Discussion

This model depended on all available observations of this species, including nesting
locations, as well as general sightings of individuals (e.g. foraging or flying). Aquila
chrysaetos are spread relatively broadly across Clark County, NV (Figure 7). It should be
noted that the species has a pan-hemispheric distribution, across North America and
Eurasia, and that individuals can have extremely large home ranges. Home rang size
exceeding 1000 km? is not uncommon (Braham et al. 2015). However, predicted habitat for
the County was relatively restricted to higher elevation areas, and areas connecting the
mountainous areas along the North South oriented ranges in the western half of the County.



The northeastern extent of the County, near Mormon Mesa was predicted to have lower
habitat values, potentially due to the lower and flatter terrain associated with these areas,
that may also experience higher maximum temperatures. Similar areas of lower habitat
scores were predicted along the US 95 corridor, the immediate area surrounding Pahrump,
CalNevAri, Laughlin, Eldorado Valley, and the area surrounding lake Mojave (Figure 7).

The locality data for this species consisted of 1304 records within the buffered modeling
area, which had a very high degree of overlap. Spatial thinning of the data reduced the
number of localities used for training and testing to 660 records.

Standard Error

The standard error map for the ensemble model indicated relatively low error (0.02)
throughout much of the study area (Figure 7), with small pockets of moderate error (0.03)
located in the Mt. Charleston area, at the Colorado River near Willow Creek, and other
areas along the Lake Mead Shoreline. Overall errors were very low, indicating good
agreement among the models used in the ensemble.
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Figure 7. SDM map for Aquila chrysaetos Ensemble model for Clark County, NV.
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Figure 8. Standard Error map for the ensemble Aquila chrysaetos Ensemble model for Clark
County, NV.

Habitat Model (Nesting Sites)

The three modeling algorithms had congruent predictions of suitable nesting habitat areas across the
County (Figure 9). There were three larger areas of suitable habitat predicted surrounding each of
the prominent mountain ranges (Spring, Sheep and Highland Range) in a circular like pattern



around those features, with additional suitable habitat predicted areas in the Virgin Mountains, and
the Bird Spring range near Goodsprings. Few differences among the models are noted. (Figure 9).

The Ensemble model had high performance relative to other models across all three metrics
(Table 4). The AUC scores were highest for the RF and MaxEnt models, with GAM
scoring slightly lower — but still with relatively high performance overall. The GAM model
also had a 10-point lower TSS score than the other models, while the RF model had a much
lower Bl score relative to the others (Table 4). The GAM and MaxEnt shared 3 of the four
most influencing environmental variables, while the RF model shared 3 with the MaxEnt
Model, and only two with the GAM model. There was only one environmental variable in
the top four (Extreme Minimum Temperature) shared by all models (Table 5). The most
important variables included Slope, and measures of temperature extremes in the County.
The Standard error maps indicated higher standard error among the GAM models than the
others, with maximum SE’s of approximately 0.06 (Figure 10). Areas of highest
uncertainty were near Overton, Lake Mojave and the Spring Range. The other model
algorithms had extremely low error among models (Figure 8). The MaxEnt model had an
irregular Continuous Boyce Index curve, where there were several peaks in the mid-range
(Figure 11), while the GAM and RF curves indicated good performance for this metric.
The poor Bl score for the RF model (Table 4) was likely due to the higher contrast between
predicted habitat and adjacent non-predicted habitat (Figure 9), which resulted in the sharp
increase in the CBI curve at the highest habitat values (Figure 11). Thus, the RF model was
nearly binary in its predictions.

Table 4. Model performance values for Aquila chrysaetos nest habitat models giving Area under
the Receiver Operator Curve (AUC), Boyce Index (BI), and True Skill Statistic (TSS) for the
ensemble model, and the individual algorithms for the testing data sets. PRBE is given as the
“precision recall break-even point” - threshold value for the ensemble model.

Model AUC BI TSS PRBE

Ensemble 0.89 0.84 0.69 0.44
GAM 0.84 0.78 0.53
Random Forest o 88 0.5 0.62
MaxEnt 0.89 0.85 0.62

Table 5. Percent contributions for input variables for Aquila chrysaetos nest habitat for models
using GAM, MaxEnt and Random Forest algorithms. The top 4 contributing variables are
highlighted, and response curves for these variables within each algorithm are given in the
corresponding sections below.

Variable GAM RF MaxEnt

Ave Max Temp 16.7 2.4 11.5



Ave Min Temp

Average Spring Max Temp
CV Average Spring Max Temp
CV Min Temp

Extreme Max Temp

Extreme Min Temp

Sand

Silt

Slope

12.5

20.5

8.5

0.2

14

16.1

1.2

0.7

9.7

2.8

2.4

2.3

11.5

3.6

61

9.7

4.7

26.6

9.7

0.7

17.7

0.5

0.9

18.2
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Figure 9. SDM maps for Aquila chrysaetos nest habitat models. Ensemble (upper left), and for
averaged models of each of three modeling algorithms used (GAM - upper right, Random Forest —
lower left, Maxent - lower right). Hotter colors indicate higher predicted habitat values, and black
circles indicate the presence points used in training and testing the models.
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Figure 10. Standard error maps for Aquila chrysaetos nest habitat models for each of three
modeling algorithms used (GAM - upper right, Random Forest — lower left, Maxent - lower right),
and an ensemble model averaging the three (upper left).



Ensemble CBI GAM CE|

&

Fl

Predicled/Expected ratio

02 04 o8 o8 02 04 e 08

Random Forest CBI MaxEnt CBI

B

PredicledExpected ratio
4

2

0z os 0z oa

a4 o o4 as
Habitat Suitability Habitat Suitability

Figure 11. Continuous Boyce Indices [CBI] for Aquila chrysaetos nest habitat models for the
ensemble model prediction (upper left) and for each of three modeling algorithms used (GAM -
upper right, Random Forest — lower left, and MaxEnt - lower right).

General Additive Model

The top 4 contributing environmental layers were Average Spring Maximum Temperature,
Average Maximum Temperature (i.e., summer), Extreme Minimum, and Maximum
Temperatures (Table 5) contributing 66% of the total explained model parameters. Higher
habitat scores for nesting areas were predicted in areas with higher Spring Maximum
Temperatures, and Average Maximum Temperatures, but with higher Extreme Minimum
(i.e., winter) temperatures, and lower Extreme Maximum (summer) Temperatures (Figure
12). Irregular dips in the response curves are likely due to the relatively lower sample sizes
for nests localities. This algorithm had more disagreement among the model runs than did
the others as discussed above (Figure 11).
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Figure 12. GAM partial response curves for the top 4 variables in the Aquila chrysaetos model
overlaid over distribution of environmental variable inputs in the study area. Histograms represent
the range of each environmental variable across the x-axis, and predicted dependence relative to
habitat suitability values are on the y-axis.

MaxEnt Model

The MaxEnt models were most influenced by the CV in Average Spring Maximum
Temperature, Slope, Extreme Min Temperature, and Average Maximum Temperature,
accounting for 63% of the model importance (Table 5). Higher habitat was predicted where
there was more variation in Spring Maximum Temperatures, higher slopes, and higher
Extreme Minimum, and Average Maximum Temperatures (Figure 13). Note that the
Average Maximum Temperatures, are not the Extreme Max Temperatures, but include both
day and night temperatures for the summer months.
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Figure 13. Partial response curves for the top environmental variables included in the MaxEnt
ensemble model for Aquila chrysaetos nest habitat. Histograms represent the range of each
environmental variable across the x-axis, and predicted dependence relative to habitat suitability
values are on the y-axis.

Random Forest Model

The Random Forest model for this species was largely driven by Slope (61%) with
additional influence of Extreme Maximum, and Minimum Temperature, the variation in the
Average Spring Temperature adding an additional 24% (Table 5). Performance curves
showed higher habitat predictions in areas with higher Slope, higher Extreme Minimum
Temperatures (i.e. winter), higher variation in Spring Maximum Temperatures, and lower
Extreme Maximum Temperatures (i.e., summer; Figure 14).
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Figure 14. Partial response curves for the environmental variables included in the Random Forest
ensemble model for Aquila chrysaetos nest habitat. Histograms represent the range of each
environmental variable across the x-axis, and predicted dependence relative to habitat suitability
values are on the y-axis.

Model Discussion

Predicted habitat for Aquila chrysaetos nests appear to be concentrated in areas
surrounding the prominent mountain ranges in the County (Figure 15). As typical for these
species they tend to be in areas of higher slope, and correspondingly more moderate
temperatures, avoiding both winter and summer extremes. The areas of highest habitat
concentration were located along the Spring and Bird Spring ranges, and throughout the
Highland and McCullough ranges. All models predicted habitat in locations surrounding
the Sheep Range, as well as the Virgin Mountains. While these areas lack some
information because they are DOE and Military lands for the most part, it might be fruitful
to acquire additional data in these areas (Figure 15). It should be noted that our dataset



included many localities east of the Sheep range in the Mormon mountains in Lincoln
County that likely contribute to these nesting habitat predictions

The locality data for this species consisted of 472 records within the buffered modeling
area, which had a high degree of overlap. Spatial thinning of the data reduced the number
of localities used for training and testing to 225 records.

Standard Error

Standard errors for the ensemble model were highest (but still only moderate values 0.03)
in the area near Goodsprings, and along the mountains bordering I-15 corridor west of the
freeway (Figure 16). The rest of the County has relatively low error rates.
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Figure 15. SDM map for Aquila chrysaetos nest habitat Ensemble model for Clark County, NV.
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Figure 16. Standard Error map for the ensemble Aquila chrysaetos nest habitat Ensemble model for
Clark County, NV.



Distribution and Habitat Use within Clark County

Golden Eagles nest in limited numbers throughout Clark County, Nevada. Every major
mountain range and several smaller ones are occupied by resident Golden Eagles
(unpublished NDOW raptor nest database). For example, there are multiple nests known
from the Spring Mountains, Newberry Mountains, and McCullough Mountains. Modeled
nesting habitat by the Great Basin Bird Observatory (Ammon 2015) was located largely
within ecosystems classified as Mojave Desert Scrub and Blackbrush although it was
restricted to mountains and cliffs within these ecosystems (Table 2).

Breeding pairs of Golden Eagles occupy and defend large home ranges with little overlap
between the territories of pairs (Marzluff et al. 1997, Kochert 2002, DeLong 2004).
Breeding season territories range in size from 20 to 54 km? (Kochert 2002). By contrast, in
the Mojave Desert of southern California, Golden Eagle home ranges averaged 307.8 km?
(SE+ 66.4) (Braham et al. 2015). New technology that provides a high degree of spatial
returns could partially account for the increased numbers on the newer analysis. In high
density population with abundant nest substrate and high prey availability, occupied nests
could be situated as closely as <1 km between neighboring pairs in some areas (Kochert et
al. 2002). In Clark County, known adjacent nests are considerably further apart than
reported in the literature (unpublished USGS Golden Eagle nesting database, NDOW
raptor nest database).

Foraging has been documented in most the habitat types occurring in Clark County.
Mojave desert scrub habitats in the expansive valley bottoms and outwash plains of Clark
County comprise a great deal of the foraging areas, as do mountain slopes, and peaks
(Longshore et al. In Prep.). Much of what we know about eagle habitat use comes from
prey base studies. However, recent advances in tracking technology have provided
opportunities to collect data on Golden Eagle movements relative to habitat use and
foraging bouts. Golden eagles also forage near rural communities. Furthermore, eagles also
fly over urban areas, and have been observed flying directly over the city of Las Vegas
(Longshore et al. Unpublished Data). While Golden Eagles are capable of taking large prey
such as bighorn sheep (Ovis canadensis) lambs or mule deer (Odocoileus hemionus) fawns,
studies of prey delivered at nests in Clark County indicate black-tailed jackrabbits (Lepus
californicus), rock squirrels (Otospermophilus variagatus), and cottontail rabbits
(Sylvilagus auduboni) comprise a great deal of prey items delivered to young eagles
(Dawson 1923, Bent 1961, Johnson et al. 2015). Other items include many medium-sized
mammals, birds, reptiles and even fish. Golden eagles also will eat carrion that is
scavenged from roadkill, escapees from sportsmen, or as refuse from agricultural activities
(Olendorff 1976, Brown 1992, Kochert et al. 2002, Longshore et al. In Prep.).

Golden eagle nesting areas are frequently in remote mountainous areas, although a few are
surprisingly close to human recreation sites (unpublished NDOW raptor nesting database).
The known Golden Eagle nests in Clark County are all on cliff substrate. There are no
known tree nests. In southwest Idaho, nesting density was found to depend on availability
of good nesting substrate and territorial intolerance, but nesting substrate was more
important than the latter factor (Beecham and Kochert 1975). Nests are large and made of
sticks, often six feet across on the nesting platform with a central area lined with fine
grasses, yucca leaves, pine boughs, and other materials. The accumulation of materials may



be several feet thick, with extreme examples measuring upwards to 20 feet tall (Ellis et al.
2009). Most eagle nests have a commanding view of the surrounding area (Dawson 1923).

Resident Golden Eagle pairs generally remain in long-term pair bonds, but mates are
sometimes lost due to a variety of reasons (e.g. mortality, intraspecies agonistic
encounters), and in that case a mate may be replaced. Mates can be replaced rapidly,
ranging from 1-8 days to replacement in Wyoming, if there are sufficient non-breeding
adults in the local population (Philips et al. 1991). Courtship begins in December or
January. Territories are often identified by the undulating flight of pairs, which is a
behavior associated with courtship or territory defense in Golden Eagles (Harmata 1982).
The behavior consists of a rise upward, tucking of the wings while continuing on a forward
trajectory that dips, only to open the wings again and rise up and repeat that behavior
(Dawson 1923). Fresh sprigs of vegetation such as pine boughs or Ephedra spp. In the
Mojave Desert (Joe Barnes — NDOW, Pers. Comm.) may be brought to the nest as well,
which is an indication of an occupied territory. Activity near the nest is generally very
secretive; however, undulating flights often occur in front of the nest cliff face. Usually one
or two eggs are laid, but there has been documentation of three eggs and rarely four
(Beecham and Kochert 1975). Eggs may be laid in February or March and require 41-45
days to hatch (see Kochert et al. 2002 and Watson 2010 for associated citations). For the
first three weeks, nestlings are not able to thermoregulate on their own, thus are particularly
vulnerable to disturbance. For about 4 weeks, the eaglets are downy white. Another four
weeks their plumage emerges as dark brown feathers, and for the next three weeks they
continue to develop. Fledgling plumage is a little darker than adults with white windows in
the wings and at the base of the tail persists for one year. Full adult plumage is acquired at
about four years of age. Fledgling eagles in Clark County are known to have travelled as
far as the Pinacate Region of northern Sonora, Mexico on their first summer (Joe Barnes —
NDOW, personal communication). Eagles that are too young to breed or unpaired adult
birds are also known as floaters and may range continentally as they mature and seek their
own territories (DeLong 2004).



Ecosystems

Table 6. Ecosystems within Clark County, and the area (Ha) of Low Medium and High predicted
suitability within each ecosystem for the models using all localities, and nesting localities only

All Localities Nesting Localities
Ecosystem Low Medium High Low Medium High
Alpine 0 113 10 124 0 0
Blackbrush | 71339 188322 204437 158241 120348 135854
Bristlecone 0 3001 4442 7565 0 0
Pine
Desert 207 4619 5335 10166 14 0
Riparian
Mesquite 5510 9535 5135 16651 2667 901
Acacia
Mixed 0 491 26839 27076 259 2
Conifer
Mojave
Desert 586508 555688 212613 1125187 144660 87801
Scrub
Pinyon 2210 10448 94030 84043 18646 13041
Juniper
Sagebrush 23 2234 2435 3954 300 450
SaltDesert | o0, 43134 23881 63187 10439 8912
Scrub

Ecosystem Level Threats

Widely known and direct ecosystem level threats include electrocution from landing on
small poorly configured power poles, collision with transmission wires, gunshots, vehicular
collisions while pursuing prey or scavenging roadkill, and toxicants such as lead shot from
carcasses and misuse or non-targeted mortality by insecticides and rodenticides (DelLong
2004). With recent emphasis on renewable energy the proliferation of wind turbines to
generate energy are the newest threat with considerable impacts to Golden Eagles in some
areas of the western United States. Those direct threat factors can often permeate the entire
landscape. Indirect ecosystem level threats include lack of prey availability and habitat
degradation due to land use changes from renewable energy development (particularly
solar arrays), transportation and utility corridors, and urban development.

Power poles are an attractant to raptors, especially at locations with few natural perches,
because they provide an aid to habitat surveillance for prey (APLIC 2006). Areas of higher
prey density may increase the attraction to these features. The broad wingspan of Golden
Eagles increases their risk of electrocution by allowing them to span the distances between
energized conductors and (APLIC 2006). The rates of Golden Eagle electrocutions may



have declined during the past 30 years due to utility company efforts to reduce risk (APLIC
2006); however, electrocution risk is still great on many older or non-retrofitted utility lines
in rural areas of Nevada (Joe Barnes and Cris Tomlinson — NDOW, Pers. Comm.).

While electrocution has long been known as a source of increased mortality on Golden
Eagles, one study of 126 eagle carcasses along power lines indicated that 84% of the
carcasses were killed by gunshot rather than electrocution (Olson 2001).

How wildfires affect prey populations for Golden Eagles is currently unknown, but the loss
of cover over large areas of desert habitat could reduce jackrabbit abundance. Under
similar circumstances of habitat conversion from shrubland to annual grassland in the Great
Basin, eagles switched prey bases and average annual clutch sizes decreased (Steenhoff and
Kochert 1988).

Population Trends

The population trends for Golden Eagles in the west are no doubt reduced from Pre-
Columbian levels due to three primary factors. First, organized and sustained predator and
prey controls have been instituted in some parts of the region for nearly a century. Second,
active hunting by shooting, as well as poisoned baits (e.g. carcasses laced with poison), and
non-target poisoning with eagles consuming rodents laced with rodenticide have reduced
eagle populations. And third, the endeavor of egg-collecting for the science of oology is
considered to have detrimentally influenced Golden Eagle populations early in the last
century. However, the greatest influence of previous egg collection was usually closer to
heavily populated municipalities like San Diego or San Francisco, California in the past.

While there are several large-scale efforts to determine population trends across the nation,
the estimates tend to have wide margins of error. For example, a recent investigation of the
Golden Eagle population in the western United Sates, based on the detection of 172 eagles
in 148 aerial line transects across 12 western states, estimated a total population of 27,392,
with a 90% confidence interval of 21,352 to 35,140, eagles (Good et al. 2007). However,
this survey dealt primarily with the interior west; and large portions of the west, i.e. most of
California, southern Nevada, southern Arizona, and southern New Mexico were not
surveyed in this investigation, nor were coastal Oregon and Washington. Recent surveys by
West Inc. reported low detections generally, and wide error on estimates of Golden Eagle
density in the Mojave Desert of NV and California.

Threats to Species
All of the direct and indirect threats listed above are influential with this species.

Two of three eagles that were studied by USGS in Clark County in 2015 were killed
prematurely. While one of them likely died in an encounter with a rival eagle, it also had
measurable levels of rodenticide in its system. A second eagle, which also contained
measurable levels of rodenticide, died from a collision with a car on Interstate 15 south of
Mountain Pass, California. More data will be required to understand the role of poisoning
in Golden Eagle populations.



Renewable energy development presents threats to Golden Eagles as well. First, wind
energy is well documented for Golden Eagle mortalities due to wind turbine blade strikes.
While wind energy is currently not a factor in Clark County, there are plans for increased
use of this energy source in the future. Secondly, renewable energy (e.g. wind and solar)
industries require extensive open spaces in open flat country that were once prime foraging
areas for resident Golden Eagles. Thus, if enough habitat is converted to solar and wind
farming there could be an influence on Golden Eagles, potentially through expanded
territory sizes needed to support reproduction. Whether this would reduce fecundity, or the
number if territories in the region is unknown. One important consideration of this scenario
is that travelling greater areas may place the eagles in contact with more risk factors for
mortality (Wiens et al. 2017).

Urban encroachment on Colorado’s Front Range (i.e., at the eastern foot of the Rocky
Mountains), was attributed to the abandonment of historically used Golden Eagle nests
(Phillips 1986). Human disturbance or activity may cause nest abandonment, render a nest
less productive, or prevent a suitable nest site from being used (GBBO 2010). Subsidized
predators may also reduce the prey base in proximity to the ever-increasing boundaries of
municipalities in Clark County (Esque et al. 2010).

Summary of Direct Impacts

Primary direct impacts most important to Golden Eagles include electrocution due to small
gauge power lines (Benson 1982), vehicular collisions from eating roadkill, secondary
poisoning due to lead shot and rodenticides in the environment, and loss of habitat due to
renewable energy and urban development. High suitability habitat for all localities is 52%
contained within conserved areas, while high suitability nesting habitat located within
conserved areas comprises 31%. Twenty percent of predicted high suitability habitat for
Golden Eagles is already located in disturbed areas , while very little nesting habitat falls in
already disturbed areas. Potential impacts occur in 28% of highly suitable habitat
considering all localities, and 70% of high habitat for nesting (Table 7).

Table 7. Categorized modeled habitat values (High, Medium, and Low) and the average area
(Hectares) predicted in the potential impact areas, conservation areas, already disturbed areas, and
overall area.

All Localities Model

Habitat Level Impact Conserved Disturbed Area (Hectares)

High 46058 84821 31861 162740

Med 58241 231577 71045 360863

Low 22226 195901 17249 235376
Nesting Localities Model

High 119215 52745 69 172029

Med 6166 89366 873 96405

Low 1526 371063 119590 492179



Existing Conservation Areas/Management Actions

The Golden Eagle is federally protected by the Migratory Bird Treaty Act, the Bald and
Golden Eagle Protection Act, and the Lacey Act. The Nevada Wildlife Action Plan
considers the Golden Eagle a Species of Conservation Priority, and recommends the
following actions: protection of nesting and roosting sites, research to develop non-lethal
wind turbine designs, and the continuation of helicopter surveys to monitor the population
(Wildlife Action Plan Team 2012).

The Nevada Comprehensive Bird Conservation Plan considers the Golden Eagle a
Conservation Priority Species, and recommends adequately managing habitat, including
cliff nesting sites; managing habitats to encourage healthy prey populations; using Eagle
Guards on transmission lines to minimize electrocution deaths; and the burial of mining
drip lines to minimize risk of poisoning (GBBO 2010). Partners in Flight’s population
objective for the Golden Eagle is to increase the statewide population from 6,200
individuals to 6,800 individuals (Rosenberg 2004).

Both the Nevada Wildlife Action Plan and Bird Conservation Plan emphasize a need for
improved monitoring to inform adequate and quantified population trends. Recent state-
wide efforts by NDOW have been focused on compiling an inventory of existing cliff-
nesting raptor nests, with emphasis on Golden Eagles, and were not designed to assess
territory status or population size (Joe Barnes and Cris Tomlinson — NDOW, personal
communication).
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