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A B S T R A C T

Estimating relationships between landscape variables and the presence of a species via occupancy modeling is a
common practice for many animal species. However, estimating these relationships can be difficult for species
where availability for detection is driven by factors that match the traditional primary sampling period. We
present a new hierarchical formulation of the occupancy model to estimate these relationships in the presence of
among-year variation in availability for detection for the threatened Mojave desert tortoise (Gopherus agassizii).
There were large swings in apparent annual proportion of area occupied ranging from 0.19 to 0.66, with year-to-
year changes in the apparent annual proportion ranging from −25.7% to 230.2%. The model estimated the true
latent proportion of area occupied was 0.57 (95% Cr.I. 0.51–0.631). The predictive raster surface developed
from the novel model formulation validated well using an independent data set (Pearson's r= 0.948), with
radio-telemetered desert tortoises spending disproportionately more time in higher predicted probability of
occurrence portions of the study area. The coefficients from the model, and more specifically the occupancy
probability predictive raster surface developed from them, can be used by land managers to guide future survey
efforts and to spatially prioritize restoration actions across a 35,000 ha conservation reserve. In general, ac-
knowledging the challenge of confounding availability for detection with apparent annual occupancy and using
the modeling framework presented here can be used to determine fundamental relationships between landscape
configuration and latent occupancy for a variety of heretofore unaddressed species.

1. Introduction

A fundamental interest to applied ecology is identifying the range of
environmental factors underlying the occurrence of a species on the
landscape (MacKenzie and Nichols, 2004; Fuller et al., 2016). Occu-
pancy modeling (sensu MacKenzie et al., 2002) accomplishes this by
explicitly addressing the biological reality that at some rate, when a
species is surveyed for at a site, it remains undetected even though it is
truly present. To address imperfect detection, occupancy modeling re-
quires multiple surveys during a period of assumed geographic and
demographic closure to estimate the rate of detection given true pre-
sence, and conversely, the probability of repeated non-detections given
true presence. While conceptually straightforward, this solution often
becomes difficult to implement given ecological realities. Target species
may be extremely cryptic, creating statistical estimation challenges
(Welsh et al., 2013; Guillera-Arroita et al., 2014). Target species may
temporarily emigrate out of the survey area, conflating probability of
detection with availability for detection and biasing occupancy

estimates (Rota et al., 2009; Valente et al., 2017). Surveys for target
species may also falsely record ‘presences’ via aural or visual mis-
identification, leading to false-positives in the dataset (Bailey et al.,
2014). These myriad ecological traits have created a need for new
statistical models to expand the application of occupancy modeling to
these more challenging situations.

Variations of occupancy modeling usually focus on two temporal
frameworks. The first is single-year static occupancy models, whereby
multiple surveys (secondary periods) are conducted within a single
primary period (e.g., year) within which occupancy is assumed constant
(MacKenzie et al., 2002). For applied ecologists a primary motivation
for single-year occupancy models is the estimation of the relationships
between occupancy and landscape features to facilitate surveys, des-
ignate land management status, or spatially prioritize habitat restora-
tion actions. The second temporal framework is multi-year dynamic
models, where the occupancy state of a site is allowed to change be-
tween primary periods (i.e., years; MacKenzie et al., 2003). Applied
ecologists are often interested in monitoring site occupancy rates over
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time and space as a surrogate for more intensive demographic mon-
itoring (MacKenzie and Nichols, 2004). Long-lived species with low
turnover in occupancy rates (e.g., long-lived reptiles) initially seem
well-suited to occupancy modeling. However, unaddressed in either
temporal framework by existing occupancy models is the situation
where a species may have varying probabilities of availability for de-
tection that are confounded with primary sampling seasons. For ex-
ample, O'Donnell and Semlitsch (2015) discuss the wide-ranging impact
of the sporadic below-ground state of terrestrial salamanders (Pletho-
dontidae) on negatively biasing apparent occupancy and Couturier
et al. (2013) discuss how unavailability for detection can severely bias
detection-corrected abundance estimates of tortoises. Several similar
situations have been reported in both terrestrial and aquatic plant
species, where lack of above-ground parts in a given season erroneously
resulted in apparent non-occupancy for that season (Alexander et al.,
1997; Chen et al., 2013; Gray et al., 2013). In this case of true presence
but physical non-availability for detection, existing models using either
temporal framework will generate biased occupancy estimates, in-
accurate and imprecise estimates of relationships to environmental
covariates, and exaggerated swings in apparent annual occupancy.

This is the case for our study species, the Mojave desert tortoise
(Gopherus agassizii), a state- and federally-protected tortoise in the
Mojave desert, southwestern USA. Desert tortoises occur at low popu-
lation densities and can be both cryptic (when aboveground, necessi-
tating multiple methods of detection) or unavailable for detection
(when belowground or temporarily outside of a survey plot).
Availability for detection can vary dramatically in response to weather
and vegetation conditions and is generally determined for each primary
period (e.g., year, generally March–June) by the availability and quality
of ephemeral forbs that are driven by precipitation amounts over the
previous winter (Duda et al., 1999). Winter precipitation and thus forb
communities across the range of desert tortoise are strongly linked to
annual El Niño Southern Oscillation conditions (Brown and Comrie,
2004), and over longer time scales to the Pacific Decadal Oscillation
(Mantua et al., 2007). This means that as a long-lived species, in-
dividual tortoises may “wait out” poor forb years resulting in them
being present, but unavailable for detection, at a site. This confounding
of availability for detection and apparent annual occupancy presents a
particular challenge for habitat restoration actions that require accurate
estimates of the relationship between environmental variables and la-
tent occupancy based on sampling in any one year.

Our goal was to develop and validate a raster surface predicting the
probability of desert tortoise occupancy across a large study area as a
function of landscape environmental variables and to do so in the
presence of high variability in availability for detection and thus ap-
parent annual occupancy. We present a novel statistical occupancy
model that allows for multiple methods of detection, is robust to year-
to-year changes in apparent occupancy driven by variation in avail-
ability for detection, and yields singular estimates of the relationship
between latent occupancy and a suite of landscape predictor variables.
The resultant predictive raster surface is useful for spatial prioritization
of habitat restoration activities for Mojave desert tortoise and the
general concept and model can be useful for a variety of species where
apparent occupancy is confounded with availability for detection
among primary sampling periods.

2. Materials and methods

2.1. Field sampling

The field and remote-sensed environmental data were collected
within the boundaries of the 35,000 ha Boulder City Conservation
Easement, an easement managed for conservation of desert tortoise and
other species south of the metropolitan area of Las Vegas, Nevada, USA
(Fig. 1). Surveys were conducted when the ambient air temperature at
the sampling site was between 18 °C and 35 °C. Initial start times began

at 7:30 am but were shifted earlier as the season went on due to in-
creasing temperatures. No tortoises were handled after the ambient air
temperature reached 35 °C on any given day and all tortoises were
handled in accordance with the Desert Tortoise Field Manual (USFWS,
2009). One field crew, consisting of two or three surveyors, walked 10-
meter belt transects, back and forth across the site, beginning at the
northwest corner of the sample unit. All sites were 4 ha in area. While
walking transects, the first surveyor was responsible for tracking their
movements within the site to ensure they remained within the bound-
aries of the given transect. During the survey, surveyors were expected
to deviate from the belt transect to more effectively inspect all bushes,
shrubs, suspected burrows, etc., to achieve 100% coverage of the site.
Belt transects in each round followed the same cardinal direction.
Subsequent site survey rounds were oriented in a different cardinal
direction from the previous round of surveys. Sites were not sampled in
any particular order but each site was sampled first in a day at least
once in 2013 and 2014 and at least twice in 2015, 2016, and 2017.

We used the robust sampling design of Pollock (1982) with multiple
secondary visits within each primary sampling period (i.e., March–-
June). We initially conducted 3 secondary sampling visits at each of 80
sites in 2013 and 2014. Because of low detections of desert tortoise we
decreased our number of sites to 60 and increased our number of sec-
ondary visits to 7 (D. McKenzie, pers. comm.). Five of the dropped sites
were dropped based on dominant soil type and were excluded from all
analyses. The remaining 15 of the dropped sites were dropped at
random and were retained in all analyses. Thus the analysis data set
consisted of 75 sites, each with three independent desert tortoise pre-
sence surveys in 2013 and 2014, and a subset of 60 sites that each had
seven independent desert tortoise presence surveys in 2015, 2016, and
2017. Occupancy surveys were conducted from early March to mid-
June. All surveys were conducted at least one week apart at each plot.
The order of plots surveyed was randomized each survey. In total there
were 1710 plot surveys conducted that were used in this analysis.

Field technicians recorded two different types of indicators of the
‘presence’ of desert tortoise at a site: live tortoises and active burrows.
Live tortoises are cryptic but mobile, whereas active burrows are static
but uncommon. There were two parallel records in the detection data,
one for live tortoises with a ‘1’ if a desert tortoise was observed during
the survey and a ‘0’ if unobserved, and another for active burrows, with
a ‘1’ recorded if an active desert tortoise burrow was observed and a ‘0’
if unobserved. Active tortoise burrows were defined as burrows occu-
pied by a tortoise or with fresh tortoise scat or tracks. The scat needed
to be fresh, mostly green and brown in color, and within 12 in. of the
burrow opening. Desert tortoise tracks located at a burrow entrance
classified the burrow as active. Potential burrows and caliche dens were
inspected using a hand mirror (or high-powered flashlight on overcast
days) to assess presence of tortoises. In the absence of a live tortoise or
fresh tracks or scat visible from outside the burrow, the burrow was
classified as inactive during the survey. Presence of a tortoise in a
burrow was considered separately as occupancy by a live tortoise and
an active tortoise burrow. We also recorded air temperature (°C) for
inclusion as a predictor on daily detection probabilities. Tortoises are
more active above ground at intermediate temperatures, but given our
seasonal timing of sampling, we only sampled during moderate to high
temperatures and thus treated temperature as a linear predictor on
detection of live tortoises (Couturier et al., 2013). We hypothesized that
detection probability would decrease as air temperature increased due
to desert tortoises spending less time aboveground and in the open at
warmer temperatures. We designed our seasonal timing to align with
maximum aboveground movement of tortoises, and being temperature-
dependent, this relationship may not apply in other seasons.

2.2. Environmental variables

We used remote-sensing analysis in a Geographic Information
System (GIS) to develop predictor variables that we expected to be
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associated with desert tortoise occupancy (Table 1). Predictor variables
were classified into three types: topographic, edaphic, and vegetative.
Topographic features relate to desert tortoise ability to move around on
the landscape, the potential for stable burrow construction, and to some
extent exposure to predators (e.g., slightly rough landscapes may pro-
vide improved hiding cover for desert tortoises). The edaphic predictor
variable was included it was potentially associated with occupancy via
facilitating stable burrow construction. The vegetative variables re-
flected biotic habitat influences, including being a general measure of
food availability and shade/cover availability (e.g., creosote bush,
Larrea tridentata, and white bursage, Ambrosia dumosa). We examined
conditional density plots of observed tortoise or burrow detections

against all variables to evaluate potential quadratic relationships. We
included quadratic terms for the predictor variables distance to road,
roughness, slope, and wash density.

All remote-sensed predictor variables were initially generated on a
5 m× 5 m raster grid (see Young et al., 2017 for detailed discussion of
variable creation). We resampled variables as the average of all grid
cells within the 4 ha occupancy sampling plots. Some variables were
adjusted (e.g., divide all values by 100) from Young et al. (2017) to
improve statistical model convergence and to facilitate a natural in-
terpretation of the intercept values in the model (Table 1). All variables
were centered (i.e., mean subtracted from observed) to facilitate ana-
lysis.

Fig. 1. Study area location in southern Nevada for modeling Mojave desert tortoise occupancy in relation to landscape predictors from 2013 through 2017. Inset
figure shows location of study area (to the left of the arrow) within designated critical habitat for Mojave desert tortoises (USFWS 1994).

Table 1
Types and units of remote-sensed predictor variables assessed in the statistical model for Mojave desert tortoise latent occupancy on the Boulder City Conservation
Easement, Clark County, Nevada, USA.

Type of predictor Predictor variable Units; notes

Topographic Distance to road Euclidean distance (100 m) to nearest paved/unpaved road
Roughnessa Root mean square diff in raster cell elevation from neighbor (×10); lower values = smoother area.
Slopea Percent slope, in tenths of a percent; 100%= 45°.
Wetnessa Unipath wetness index (×10); low values = drier area.
Washesa Average density of washes (10 m/ha) w/in 25 m of cell.

Edaphic Dominant soila Soil Great-Group type
Vegetative Creosote covera Areal coverage of creosote (sq. decimeters/25 m2)

Bursage covera Areal coverage of bursage (sq. decimeters/25 m2)

a These variables calculated by Young et al. (2017). Most variables were transformed to facilitate model convergence and interpretation of the intercept.
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2.3. Model development

We modified the approaches of Royle and Kéry (2007), Nichols et al.
(2008), and Mordecai et al. (2011) to treat apparent annual occupancy
of site i as arising from a constant latent true occupancy state for that
site and to do so in a Bayesian state-space hierarchical model with two
methods of detection, which can greatly improve precision of esti-
mating occupancy parameters (Fig. 2; Graves et al., 2012). In the model
presented in Fig. 2, example foci of statistical inference could include
simple estimation of the true latent occupancy for site i, the relation-
ships between landscape predictors and latent true occupancy (as we
did here), the relationships between predictor variables and changes in
yearly apparent occupancy (e.g., factors driving availability for detec-
tion), or using survey-level predictor variables to minimize hetero-
geneity in detection probabilities (Miller et al., 2015). We can also re-
formulate the conceptual model of Fig. 2 as a table of possible detection
histories, contingent on true occupancy, apparent annual occupancy,
and detection probability for multiple survey methods (Table 2).

We compared the proportion of area occupied under our latent
constant occupancy model with what we would have estimated as the
year-specific proportion of area occupied under independent single-
year models. We did this to contrast how a naïve approach would imply
inter-annual swings in estimated occupancy that we explicitly in-
corporated in our latent occupancy model.

For our purposes with desert tortoise, we were primarily interested
in how landscape predictor variables were associated with latent true
occupancy (zi). We modeled these relationships as zi = logit(β0 + βnxn)
for β coefficients and x predictor variables of number n. We modeled
apparent occupancy ψij for site i in year j as ψij ∼ Bernoulli(zi * ϕj)
where ϕj is the across-site apparent occupancy rate in year j. This
provided a link between the observed data, the across-site variation in
apparent occupancy among years, and doing so conditional on latent
true occupancy. We also included a survey-level detection probability
covariate for live tortoise detections to account for temperature-

induced changes in availability for detection (e.g., above ground) and
detection probability (e.g., active or in the open) logit(pj)
= p.yearj + βtemp ∗ Tempijk where pj was the detection probability for
live tortoises in year j conditional on an intercept for detection prob-
ability in year j (p.yearj) and the air temperature during the survey at
site i in year j on survey k. All priors were uninformative.

We considered probabilities of latent true occupancy of site i to
reflect relative variation in the frequency of desert tortoise encounters
because of the potential for temporary emigration within primary
periods and the inability to separate yearly apparent occupancy from
availability for detection. Nonetheless, throughout this manuscript we
refer to predicted desert tortoise encounter frequencies as relative
probabilities of occupancy for consistency with the general occupancy
literature.

2.4. Predictive surface development

We used the estimated relationships between latent true occupancy
and landscape predictor variables to develop a continuous predictive
raster surface in a GIS that represented the spatial variation in the re-
lative probability of occupancy of desert tortoises across the study area.
We developed this surface as an applied tool for land managers to
spatially prioritize habitat restoration actions within the study area.
This allows actions to be designed that either ‘shore up’ habitat in areas
with relatively high tortoise occupancy or ‘lift up’ habitat in areas with
low tortoise occupancy.

2.5. Model and predictive surface validation

We verified the performance of the occupancy model using three
increasingly robust techniques. First, model performance was assessed
internally through inspection of Markov Chain Monte Carlo (MCMC)
plots and R-hat diagnostics, seeking convergence of the independent
MCMC chains for all parameters and R-hat diagnostics< 1.05 (Gelman
et al., 2004). Second, we used logistic regression to test whether the
mean value of the predictive surface raster within the plot was posi-
tively related to whether an occupancy sampling plot ever had a live
tortoise or active burrow detection. Third, we used independent desert
tortoise radio-telemetry locations to determine if resident tortoises used
the study area proportional to what was predicted by the occupancy
predictive surface. To do this we used correlation analysis to test
whether the number of telemetry locations increased in each successive
bin rank of the five-binned predictive raster surface.

We also conducted a post-hoc test of the assumption within the
model that latent true occupancy was constant across our study period.
We generated independent across-site apparent occupancy rates for
each year, then performed a simple linear regression on apparent oc-
cupancy rates over time. We hypothesized that if the regression line
showed a clear positive or negative trend (with full or near statistical
significance, α < ≈0.2) that would be evidence for rejecting the as-
sumption of constant occupancy. Conversely, we hypothesized that if
the linear trend point estimate was near zero with α > ≈0.2 there was
no evidence to reject our working hypothesis. We used a fuzzy
threshold (α < ≈0.2) for assumption rejection because of the arbi-
trary nature of using p-values as thresholds and to be conservative in
failing to reject the assumption. In the linear regression we included the
offset ‘effort’ to account for unequal number of site visits between the
first two years (three visits per year) and the latter three years of the
study (seven site visits per year).

We ran the final model for 100,000 MCMC iterations on three se-
parate chains. The first 10,000 iterations were discarded for burn-in
and the remaining iterations were thinned to every 30th draw to reduce
autocorrelation in the posterior draws, resulting in 9000 iterations
saved for inference. We present 95% Bayesian credible intervals (Cr.I.)
along with all parameter estimates. Statistical analyses were completed
using ‘r2jags’ in R 3.4.0, and, for the single-season occupancy contrast

Fig. 2. Conceptual model for estimating latent true occupancy given inter-an-
nual variation in apparent annual occupancy and standard within-year detec-
tion probabilities. Left column represents possible predictor variables for un-
observable levels of the hierarchy.

Table 2
Probability of observed survey outcome y given true latent occupancy z, at site
i, using survey method m, in year j, on survey k, as a function of apparent site
occupancy ψ. Although omitted here for simplicity, we modeled method-spe-
cific detection probabilities independent among years (e.g., pmj). This for-
mulation assumes no false positives.

True occupancy P(ymjk = 0|zi) P(ymjk = 1|zi)

zi = 0 1 0
zi = 1 (1 − pmj) ∗ ψij pmj ∗ ψij
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models, using Program PRESENCE (Hines, 2006). All spatial calcula-
tions, including building the predictive surface using the Raster Cal-
culator tool, were done in ArcGIS 10.4.1. See online Appendix for all
statistical code for data processing and analysis.

3. Results

We recorded 96 live tortoise detections across all sites and years,
with 10, 6, 22, 22, and 36 observations in years 2013 through 2017,
respectively. There were 63 active burrow detections, with 12, 5, 8, 9,
and 29 in years 2013 through 2017, respectively.

There were large swings in yearly apparent occupancy rates across
our sample sites, ranging from 0.10 to 0.72 for naïve proportion of area
occupied and 0.19 to 0.66 for latent occupancy model estimates
(Fig. 3). Calculated as proportional year-on-year changes in model-es-
timated proportion of area occupied, changes in apparent occupancy
from 2013 to 2014 was 7.6%, and for subsequent year-on-years was
230.2%, −25.7%, and 28.3%, respectively (Fig. 3). Both naïve and
latent model-based estimates were similar within years, and both
highlighted large apparent swings in occupancy. In contrast, the across-
year latent true proportion of area occupied was estimated as 0.57
(95% Cr.I. 0.51–0.63; Fig. 3). Linear regression on latent model-based
yearly apparent occupancy, after accounting for the different survey
effort in 2013–2014 versus 2015–2017, found that there was no trend
in yearly apparent occupancy (β =−0.42, 95% C.I. -5.44–4.60,
p= 0.885), thus failing to find evidence to support rejecting our
working assumption of constant latent occupancy within our time
frame.

There was considerable variation among years in detection prob-
abilities for both methods (Fig. 4). The probability of detecting a live
tortoise decreased as air temperature increased (βtemp =−0.074, 95%
Cr.I. =−0.087, −0.060). The temperature coefficient indicated that
for every 10 °C increase in air temperature there was a 52.3% decrease
in the odds of detecting a live tortoise.

After inspection of the posterior densities from a saturated model,
we removed the variables quadratic slope, wetness, and wash density

from further consideration because the posterior densities broadly
overlapped zero. We also removed dominant soil type from the final
model because it resulted in extreme logit values that distorted the
coefficient estimates of the other variables. The final statistical model
for latent true occupancy was logit(zi) = z0i
+ βdistrd ∗ Distrdi + βdistrd2 ∗ Distrdi2 + βrough ∗ Roughi + βrough2
∗ Roughi2 + βslope ∗ Slopei + βcreosote ∗ creosotei + βbursage ∗ bursagei
where zi was the latent true occupancy of site i, z0i was an intercept
occupancy value in the absence of covariates, and βx were the coeffi-
cient estimates for predictor variables x.

We found that a site was more likely to be occupied the further it
was from a road (βroad = 5.73, 95% Cr.I. = −1.16, 12.52;
βroad2 = 0.96, 95% Cr.I. = 0.18, 1.56). Sites were more likely to be
occupied at low levels of topographic roughness, and likelihood of non-
occupancy increased rapidly as roughness increased (βrough =−3.84,
95% Cr.I. =−37.24, 28.98; βrough2 =−3.71, 95% Cr.I. = −8.17,
−0.21). As creosote coverage increased, a site was non-significantly
less likely to be occupied (βcreosote = −0.92, 95% Cr.I. = −3.00,
1.02). Sites were more likely to be occupied with higher coverage of
bursage (βbursage = 0.89, 95% Cr.I. = 0.15, 1.66). The odds ratio for
bursage indicated that a site was 2.44 (95% Cr.I. = 1.15, 5.23) times
more likely to be occupied with every 1 decimeter2/25m2 increase in
bursage cover. Although the variable ‘slope’ was retained in the final
model, the 95% Credible Interval of the coefficient estimate broadly
overlapped zero and was therefore not significant or meaningful
(βslope = 5.617, 95% Cr.I. = −5.03, 16.91).

Mean distance to road across the plots was 1020.1 m (SD 878.0),
mean roughness index was 0.73 (SD 0.36), mean slope was 2.74% (SD
1.1), mean areal coverage of creosote was 0.56 m2 per 25 m2 (SD 0.31),
mean coverage of bursage was 2.47 m2 per 25 m2 (SD 0.66), mean
wetness index was −5.37 (SD 0.79), and mean wash density was
0.011 m/ha (SD 0.008). There were four dominant soil types:
Haplargids, Haplocalcids, Torriorthents, and Torripsamments. The
proportion of sites that ever had a detection of a live tortoise or active
burrow was higher for sites in Haplocalcid soils (56.0% had detections)
and Torriorthent soils (54.3%) than at sites in Haplargid soils (21.4%)
and Torripsamment soils (0.00%; only a single site in this soil type).

We used the coefficient estimates in the final statistical model for
latent true occupancy above and the landscape variable input rasters to
generate a predictive raster surface of the relative variation in prob-
ability of desert tortoise occupancy across the study area. Then, we re-
classified the raster surface into five equal area bins, such that 20% of
the study area was classified as lowest occupancy probability, 20% was

Fig. 3. Estimated proportion area occupied derived under the latent constant
occupancy model, yearly apparent occupancy, and single-year naïve estimates
of proportion area occupied. Latent proportion of area occupied with 95%
credible interval bounds are horizontal black line and surrounding gray band,
respectively. Annual apparent occupancy estimates under latent model are open
circles; dotted vertical lines are 95% credible intervals. Single-year naïve esti-
mates are black squares; dashed vertical lines are 95% confidence intervals.
Single-year naïve estimates represent ‘typical’ approach to modeling multiple
years of site occupancy and imply large inter-annual swings in the proportion of
sample sites that were occupied. Survey effort was considerably lower in 2013
and 2014 compared to subsequent years.

Fig. 4. Year-specific detection probabilities for live desert tortoises and active
burrows at occupied sites in the Boulder City Conservation Easement, Clark
County, Nevada, USA, 2013–2017. Light gray bars are active burrows, dark
gray bars are live encounters. Error bars are 95% credible intervals.
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low-moderate occupancy probability, etc. (Fig. 5).
The MCMC sampler diagnostics showed that all three chains con-

verged on the same distributions for parameters, including deviance,
and showed a high degree of mixing. For most monitored parameters,
including deviance, there was low autocorrelation in the sample draws.
R-hat indices, a measure of the mixing ratios of each parameter's pos-
terior distribution across the three chains, were below 1.05 for all but
three of the 103 monitored parameters, often below 1.002, indicating
reliable inference from the posterior distributions of the parameters of
interest.

The detection history at sample sites was well predicted by the
underlying predictive raster surface. Logistic regression found that as
the mean predicted probability of occupancy within the site increased,
the site was more likely to have ever had a detection of a live tortoise or
active burrow (βmean = 0.518, 95% C.I. = 0.127, 0.909; p= 0.009).

Locations of free-ranging independent radio-telemetered desert
tortoises were well-predicted by the predictive raster surface, with
fewer locations in the predicted relatively lower occupancy portions of
the BCCE and increasingly more locations in the increasingly higher
predicted occupancy bins (Pearson's r= 0.948, p= 0.014; Fig. 6).

4. Discussion

Occupancy modeling has dramatically improved our ability to
monitor populations and assess habitat relationships by explicitly ad-
dressing imperfect detection of a species during single surveys
(MacKenzie et al., 2002; Bailey et al., 2014). However, for species
whose availability for detection may be driven by forces that operate at
the same temporal scale as the primary sampling period, such as Mojave
desert tortoise, availability for detection across the primary sample
period can be inseparable from apparent annual occupancy. When the

ultimate goal of occupancy modeling is applied habitat management
(e.g., identifying areas to target restoration activities based on occu-
pancy probability of the target species), simple occupancy models could
result in poor or biased estimation of the relationship between habitat
features and the latent occupancy state. Based on naïve single-year

Fig. 5. Predicted relative probability of occu-
pancy of Mojave desert tortoises across the
Boulder City Conservation Easement, Clark
County, Nevada, USA, 2013–2017. Raw values
for relative predicted occupancy was re-
classified into five equal-area bins ranging
from ‘1’ (lowest probability) to ‘5’ (highest
probability). Inset map shows location of study
area (dark polygons in center) within regional
distribution of critical Mojave desert tortoise
habitat (U.S. Fish and Wildlife Service USFWS,
1994).

Fig. 6. Difference between the number of observed independent desert tortoise
locations in each predicted relative probability of occupancy bin compared to
the number expected at random in the Boulder City Conservation Easement,
Clark County, Nevada, USA. For example, approx. 150 fewer locations occurred
in the lowest predicted occupancy bin than expected if independent tortoises
were using the study area randomly with respect to the predictive raster sur-
face.
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occupancy estimates, we would have estimated dramatically different
proportions of our study area as being occupied in any single year and,
depending on the year, may have had biased an imprecise parameters
estimates for landscape covariates. Here, we present a simple model
that explicitly subsumes variability in availability for detection among a
short set of primary periods to estimate latent occupancy over this set of
periods. We found no evidence for an underlying trend in occupancy
over our five-year time period and our resultant predictive raster sur-
face validated well both internally and externally using an independent
data set. This model may prove useful for species that exhibit popula-
tion changes over larger time periods than single years and that require
multiple methods of detection to more precisely estimate how latent
occupancy is related to landscape features.

This model rests on one explicit assumption, that latent occupancy
within a site is truly constant across the full sampling period. Because the
true occupancy state is latent for sites and years without a positive de-
tection, it is ultimately unobservable whether or not a site's occupancy
state remained constant. Other recent occupancy models have overcome
this challenge in a variety of ways. Nichols et al. (2008) and Mordecai
et al. (2011) relax the spatial closure assumption in occupancy models
via modeling occupancy at multiple overlapping scales whereby sub-
units need not assume constant occupancy to classify a larger unit as
occupied. Separately, violation of the constant occupancy assumption
within primary sampling periods (i.e., temporary emigration) has been
shown to bias occupancy estimates (Rota et al., 2009; Otto et al., 2013;
O'Donnell et al., 2015; Valente et al., 2017). This bias can be addressed
via explicit modeling of the temporary emigration process, but to date
this has only been done for temporary emigration among secondary
sampling periods within a single primary period. These variations on
occupancy modeling have two factors in common. First, they require
additional data and sampling effort to tease apart detection probability
versus availability for detection, which can be difficult to achieve with
species that fundamentally have low or highly variable detectability or
availability for detection. Second, they were developed for case study
species that had the ecological potential to exhibit rapid off-site tem-
porary emigration and high rates of occupancy state turnover among
years. Neither modeling option deals with species where availability for
detection itself is variable among and inextricably linked to primary
sampling periods, a common situation for terrestrial and aquatic plants
(Alexander et al., 1997; Chen et al., 2013; Gray et al., 2013) and ter-
restrial reptiles and salamanders (Couturier et al., 2013; O'Donnell and
Semlitsch, 2015), among other species. We suggest that the latent oc-
cupancy model presented here is a useful complement to existing occu-
pancy models in that by making the simplifying assumption of constant
latent occupancy over a short number of primary periods, we can side-
step teasing apart detection probability and availability for detection and
thus leverage limited detection data to effectively estimate the funda-
mental relationships between latent occupancy and landscape features.

he assumption of constant occupancy may not always be valid, and
it is critical to test it whenever possible. Here, we conducted two va-
lidation tests. The first was whether the independent yearly apparent
occupancy rates showed a clear temporal trend. After adjusting for
unequal survey effort in different years, we found no evidence for a
temporal trend. The second test was validation of the resultant pre-
dictive surface using an independent data set. We found that the pre-
dictive occupancy raster surface effectively predicted how independent
desert tortoises used our study area, suggesting that for management
purposes the predictive raster was robust to any potential mild violation
of the constant occupancy assumption that may have gone undetected
in our analysis of trend in yearly apparent occupancy rates. One re-
viewer pointed out that trends in occupancy rates may only be present
in areas of population expansion or contractions, and that sporadic
changes in occupancy among years may occur. We concur with this
statement in the general sense, but suggest that sporadic changes in
annual occupancy around a latent constant average occupancy over
time could be interpreted as constant occupancy. This ties into our

original goal of estimating relationships between landscape variables
and latent occupancy given large swings in apparent annual occupancy,
which given the natural history of our study species, are not possible in
a non-trend scenario. Nonetheless, we caution that in other cases and
systems this assumption must be critically evaluated prior to making
inference on which to base management actions.

We also observed wide credible intervals around annual detection
probabilities, especially for live tortoises. Within each year, this is likely
due to the estimates being a combination of both detection probability
and availability for detection (e.g., temporary emigration). Thus,
though the final predictive surface validated well for management
purposes, we suggest that future models may benefit from work on
teasing out temporary emigration from detection probability (Valente
et al., 2017).

Specific to our study species, the Mojave desert tortoise, we found
negative relationships between occupancy and proximity to roads,
higher topographic roughness, and higher coverage of creosote bush.
We found a positive relationship between occupancy and higher cov-
erage of bursage. Some of these results are similar to other research
with Mojave desert tortoise. Relative indices of desert tortoise abun-
dance and survival are higher when further from roads and from roads
with lower traffic levels (Nafus et al., 2013). In contrast, previous re-
search has found that when juvenile desert tortoise are near burrows,
they select areas with higher creosote and lower bursage cover than is
available (Todd et al., 2016). The proximity and density of washes, a
variable that we found unrelated to occupancy, have been positively
related to desert tortoise habitat selection and survival (Todd et al.,
2016; Nafus et al. 2017). One possible reason for the discrepancy may
be that we measured a different metric of desert tortoise ecology.
Probability of simple occupancy may be related to different factors than
those that affect survival or 3rd-order habitat selection (Johnson,
1980). Desert tortoise may be more likely to occur in landscapes with
lower creosote and higher bursage cover, but within those landscapes
may prefer locations with higher creosote and lower bursage cover.
Similarly, conditions suitable for burrow construction and viability may
be correlated with different landscape features than those selected by
desert tortoise when away from burrows. Management actions based on
patterns underlying occupancy probability should also consider the
composition of environmental variables underlying other important
drivers of population sustainability, such as survival.

Both specific to desert tortoise and generalizable to other species
and systems, the latent true occupancy model we have presented here
has useful implications for applied ecology. Managers can use the
predictive map to spatially prioritize restoration actions to either uplift
poor-quality habitat or shore up high-quality habitat. When evaluated
within a GIS, the raster surface can be used to identify which landscape
variables are primary drivers of high or low occupancy for any specific
spot on the landscape. And in a larger context, the predictive map can
be used to target future occupancy surveys, stratify surveys, or de-
lineate areas for conservation protection status that are more likely to
contain the species of concern. We suggest that this latent occupancy
model can be a useful addition to the existing suite of occupancy
models, especially for species where detection probability and avail-
ability for detection are low, variable, and conflated with primary
sampling periods.

5. Conclusions

Previous studies on a wide variety of taxa, including terrestrial and
aquatic plants, salamanders, and tortoises, has found that individuals
can be present during a survey but physically unavailable for detection,
resulting in potential biases in occupancy rates and detection prob-
abilities. Here, we present a novel occupancy model to estimate true
latent occupancy rates, and the relationship between latent occupancy
and landscape features, in the presence of availability for detection
being confounded with the primary sampling period. Our model and
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predictive raster surface of Mojave desert tortoise occurrence across a
large study area validated well internally and with independent desert
tortoise data. This approach to occupancy modeling may be useful for
improving the conservation and management of a wide variety of
species and systems.
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