

Rare Plant Inventory and Predictive Habitat Modeling

August 12, 2010

Elizabeth Bickmore Lee Bice Sara Zimnavoda

Presentation Overview

- Background
- Modeling
- Rare Plant Inventory
- Field Season Update
- Next Steps

- Species list development
 - Conservation Management Strategy for rare plants
 - Identified information gaps regarding baseline information for nine low elevation rare plant species
 - Identified three additional priority species
 - Las Vegas buckwheat
 - Two-toned beardtongue
 - Beaver Dam breadroot
 - Two species removed
 - Mariposa lily
 - Parish phacelia

Project Goal:

- Better understand the distribution of ten selected rare plant species in Clark County
 - Identify unknown populations
 - Identify the extent of known populations

Ten Rare Plant Species	
Pahrump Valley buckwheat	white bearpoppy
threecorner mikvetch	yellow two-tone beardtongue
sticky buckwheat	Las Vegas bearpoppy
white-margined beardtongue	Las Vegas buckwheat
Beaver Dam breadroot	sticky ringstem

- Initiated in 2009
- Project boundary is Clark County
 - Excluded inaccessible areas tribal lands, DOD,
 Las Vegas Valley
- Project phases:
 - Phase one- Develop two predictive GIS habitat models
 - Predict distribution of sand and gypsum species
 - Phase two Identify survey locations
 - Phase three- Rare plant inventory

Related Projects

- Determination of potential survey areas
 - Soil data analysis and methods
 - Remortel complete
 - Survey design
 - TNC complete
- Development of habitat models
 - Remote sensing
 - TerraSpectra complete
- Inventories
 - Rare plant, habitat
 - Jones and Stokes (complete)
 - Jones and Stokes (in progress)

Modeling

- Predictive Habitat Model
 - Initial draft inadequate SSURGO soils data
- Second draft remote sensing technique
 - Classifications were evaluated against
 - Aster Imagery, SSURGO Soils Data, and Landsat ETM+ Imagery
 - Selected geologic maps
 - Known plant locations
 - Validation field trips
 - Quick and relatively inexpensive
 - Classifications used to select survey locations

Modeling

- Predictive habitat model, cont.
 - Limitations
 - Could not model for white bearpoppy or two-tone beardtongue
 - Available rare plant data points
 - Results
 - Las Vegas buckwheat appears to prefer spring deposits

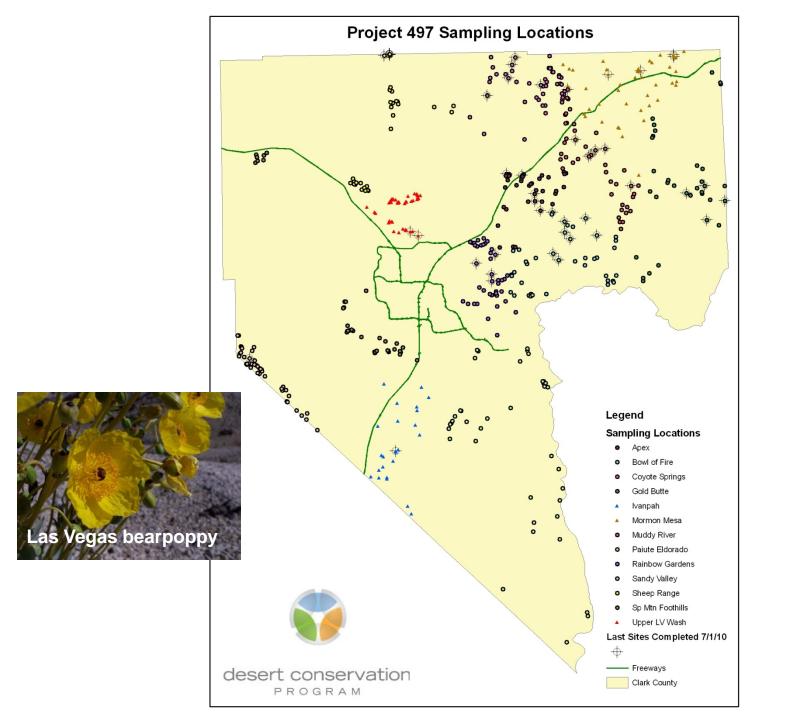
Rare Plant Inventory

Rare plant inventory

- Sample design
 - 13 Geographic units
 - Sites were randomly selected using Generalized Random Tessellation Stratified (GRTS) survey design
 - 511 individual survey plots
 - Each survey plot is a four-hectare square (approx.10 acres)
 - Surveyed various elevations, aspects, and soil types

Rare Plant Inventory

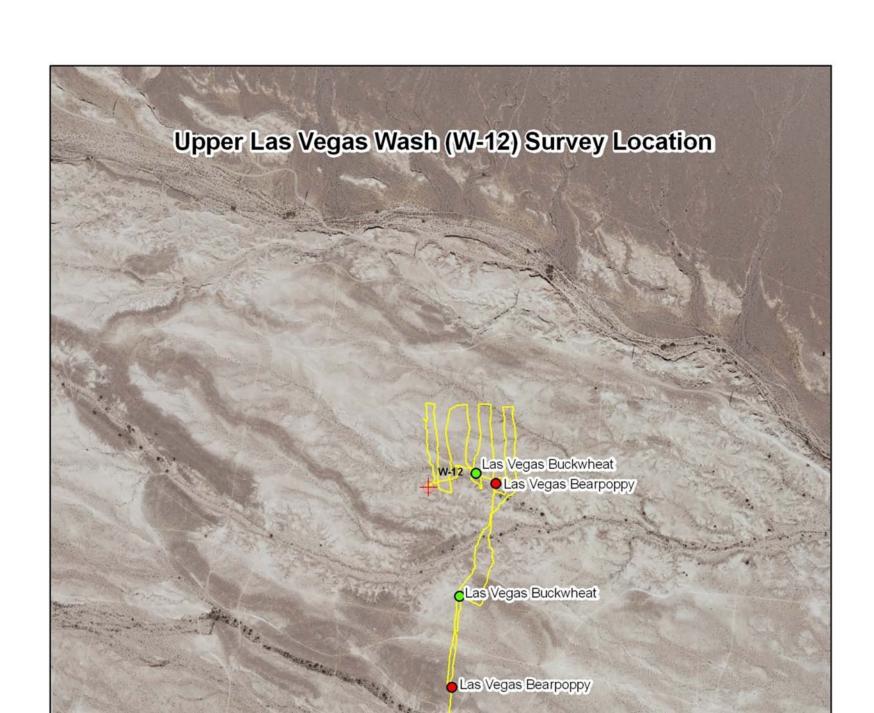
Two field seasons (2009, 2010)


Began in April

White margined beardtongue

- Associated with annual species' blooming periods
- Prioritized based on lifecycle, elevation of survey plots

Field Season Update

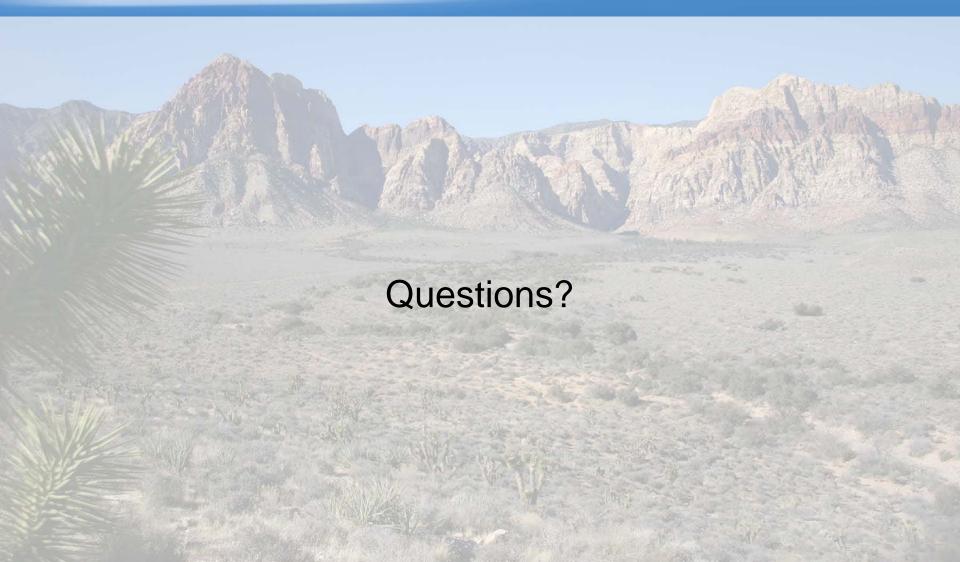

- 2009 Field Season
 - Developed Models
 - Survey plots were identified
 - Inventoried 466 survey plots
 - Preliminary data
- 2010 Field Season
 - Completed Inventories
 - Inventoried 45 survey plots
 - Finalizing quality control on field survey data
 - Finalizing reporting

Field Season Update

Data Collected

- Target species detected
- Incidental observations
- Habitat
 - Aspects, slope, threats/disturbance, cryptogamic crust, soils (sand rock gypsum/calcareous) rock outcrops, other rare species, invasive plants
 - Vegetation composition (dominant, co-dominant and associate), indicator species
- Photographs
- Other observations

Next Steps


- Prepare final report
- Refine the predictive model incorporating latest information: vegetation layers, soils information, elevation, fire history, data collected from surveys, etc.
 - Jones and Stokes presence absence data, habitat characteristics
 - UNLV gypsum soil data
 - UNR geomorphology
 - Collaborate with agencies collecting additional data
- Potential partnership with BLM
- Put the predictive models to use

Acknowledgements

- Sonja Kokos for project development, implementation and support
- Sara Zimnavoda, Matt Hamilton and Lee Bice for their assistance and support on all aspects of the project
- Dave Brickey and Larry Tinney for their assistance in developing the gypsum and sand models
- Rob Sutter and Analie Barnett for their assistance with the sample design
- Jones & Stokes and their subcontractors for the inventory work
- BLM, FWS, NPS, BOR, NDF, NDSL, NRCS, NNHP and SNPLMA

