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Introduction 
 In 2013, Clark County, Nevada’s Desert Conservation Program (DCP) began 
implementing a 4+ year pilot study to investigate the utility of an occupancy monitoring program 
for monitoring desert tortoise (Gopherus agassizii) in the Boulder City Conservation Easement 
(BCCE; DCP 2011).  Occupancy monitoring has been demonstrated as an efficient way to 
monitor desert tortoise populations (Zylstra et al. 2010).  A key goal of this DCP study was to 
use the results to better understand spatial patterns of desert tortoise occurrence and to use those 
patterns to create a spatially-explicit predictive map of the probability of occurrence across the 
BCCE. 
 Occupancy surveys were initiated in spring 2013, with data collection through spring 
2017 (to date).  DCP (2011) provides full details on monitoring protocols for the study and data 
set described herein; a brief overview is presented here for clarity.  Occupancy modeling (sensu 
MacKenzie et al. 2002) focuses on quantifying the probability that a sample site is occupied by a 
species given imperfect detection.  When a species is surveyed for in the field, it is not always 
detected 100% of the time that it is present.  Imperfect detection can potentially seriously 
underestimate the proportion of an area thought to be occupied by a species, leading to biased 
estimates of the range of species occurrence and biased estimates of relationships between 
species occurrence and environmental variables (MacKenzie et al. 2002).  To remedy this, 
MacKenzie et al. (2002) developed a method involving multiple visits made to the same sample 
unit within a window in which the true occupancy state (either occupied or unoccupied) can be 
assumed constant (e.g., a season).  The probability that a site was occupied given no detections 
can then be estimated.  This modeling approach has been expanded to include a variety of 
increasingly complicated situations, including occupancy dynamics over multiple years, 
simultaneous occupancy patterns for multiple species, and defining occupancy as >2 mutually-
exclusive ‘states’ (see Bailey et al. 2014 for recent review).   
 The ecology of desert tortoise presents several challenges for occupancy sampling.  
Desert tortoise occur at low population densities and can be both cryptic (when aboveground) or 
unavailable for detection (when belowground).  Availability for detection can vary dramatically 
both within and among years in response to weather and vegetation conditions (Duda et al. 
1999).  In addition to variable detectability, desert tortoise home ranges can be larger than a 
feasible occupancy sample unit (e.g., mean minimum convex polygon home ranges of up to 16.2 
ha; Franks et al. 2011).  Maximum distances between consecutive telemetry relocations of over 
5.3 km have been observed in the BCCE (DCP unpublished data).  This means that for a sample 
unit, it is possible that it is ‘occupied’ during the season but a tortoise is not physically within the 
sample unit during a particular sampling event (i.e., “temporary emigration”).   

Standard occupancy models have been expanded to include both multiple methods of 
detection and surveying for a species at multiple scales (Nichols et al. 2008; Mordecai et al. 
2011).  Further, Royle & Kerry (2007) re-framed occupancy modeling as a Bayesian state-space 
model, which dramatically increases the flexibility of occupancy modeling beyond the original 
maximum likelihood framework.  I modified the approaches of Nichols et al. (2008) and 
Mordecai et al. (2011) to address multiple temporal scales and to do so in a Bayesian state-space 
hierarchical model with two methods of desert tortoise detection, which can greatly improve 
precision of estimating occupancy parameters (Graves et al. 2012).  There are three primary 



levels to the hierarchy: the survey-level detection data, a year-specific apparent occupancy 
estimate, and an across-year true occupancy state.  Figure 1 shows a conceptual representation of 
how environmental and weather predictors affect detection probabilities, observed detection data, 
yearly apparent occupancy, and latent true occupancy during the study period.  

 
Figure 1.  Conceptual model of desert tortoise occupancy in relation to environmental 
predictors on the Boulder City Conservation Easement, Clark County, Nevada, USA, 2013-
2017.  The primary focus of the analysis is on identifying the relationships between 
‘environmental predictors’ and ‘true occupancy’ while accounting for all other model 
components. 
 

 
 
 The conceptual model highlights several important components of the analysis, starting 
from the bottom and working upwards.  First, the probabilities of detecting live tortoises and 
active burrows are likely different and each is potentially influenced by observable factors, such 
as weather conditions and Julian date on the day of the survey.  Second, observations of live 
tortoises and active burrows separately but jointly contribute to the estimate of whether a site 
appears occupied within that year.  ‘Yearly apparent occupancy’ could also be termed ‘available 
for detection’ (sensu Mordecai et al. 2011) because we are making the assumption that true 
occupancy of a site is constant within the study period.  Potential departures from this 
assumption are likely minimal based on desert tortoise life history (i.e., long-lived, low 
reproduction, long time to sexual maturity), results from preliminary analyses (i.e., juvenile 
desert tortoises were never encountered without an adult tortoise present), the ecological 
potential for confounding (i.e., dynamics confounded by prevailing weather and availability for 



detection), and land management status (i.e., all sites are in a protected conservation easement 
and have been actively conserved since 1995).  Yearly apparent occupancy can be considered 
separate samples of the true latent occupancy state.  We note that in this study within each year, 
it is possible that temporary emigration is affecting the detection data, whereby within a year 
plots are occupied by a desert tortoise during one survey and not during another, which may be 
due to the tortoise temporarily emigrating from the plot.  Because of this the occupancy estimates 
can be interpreted as the frequency of desert tortoise encounters rather than the proportion of 
sites occupied by the species (D. MacKenzie, unpublished data).  This novel occupancy model 
allows us to explicitly estimate the relationships between landscape features and occupancy 
while simultaneously addressing variation in detectability (including probability of detection 
given presence, unavailability for detection given presence, and absence due to temporary 
emigration) both within and among years.  Finally, the output from the model was used to build a 
predictive surface in a Geographic Information System (GIS) that delineates areas with different 
levels of relative probability of desert tortoise occurrence as a function of landscape variables.  
The predictive surface was then validated using two data sets to assess the robustness of the 
model outputs. 
 
Methods 
Field data collection 

The field and remote-sensed environmental data were collected within the boundaries of 
the BCCE, Clark County, Nevada (Figure 2).  The DCP leveraged the multiple-visit 
methodology at 80 sites in each year from 2013 – 2017, with the notable exception that the 
number of surveys at each site within a season increased from three to seven beginning in 2015 
due to low detection probabilities.  To compensate for cost increases, 20 sites were dropped from 
the project after 2014.  Five of the 20 sites were dropped non-randomly (i.e., due to unique site 
geologies) and will be excluded from all analyses.  The remaining 15 of 20 dropped sites were 
dropped at random, and are retained in the analyses (albeit only with data in 2013 and 2014).  
Thus the occupancy analysis data set consists of 75 sites, each with three independent desert 
tortoise presence surveys in 2013 and 2014, and a subset of 60 sites that each had seven 
independent desert tortoise presence surveys in 2015, 2016, and 2017. 

DCP contractors also recorded two different types of indicators of the ‘presence’ of 
desert tortoise at a site: live tortoises and active burrows.  Live tortoises are cryptic but mobile, 
whereas active burrows are static but uncommon.  There are two parallel records in the detection 
data, one for live tortoises with a ‘1’ if a desert tortoise was observed during the survey and a ‘0’ 
if unobserved, and another for active burrows, with a ‘1’ recorded if an active desert tortoise 
burrow was observed during the survey and a ‘0’ if one wasn’t observed.  Field crews also 
recorded air temperature (°C) for inclusion as a predictor on daily detection probabilities.  We 
hypothesized that detection probability would decrease as air temperature increased due to desert 
tortoises avoiding being above ground. 

 
 
 
 



Figure 2.  Location of the Boulder City Conservation Easement and occupancy sample plots in 
Clark County, Nevada, USA.  Plots are symbolized by whether a live desert tortoise or active 
burrow were ever recorded at the plot from 2013 – 2017.  Only plots included in the statistical 
analysis are shown. 

 
 
 



 We used remote-sensing analysis to develop predictor variables that might be expected to 
be associated with desert tortoise occurrence (Table 1).  Predictor variables can be classified into 
three general types: topographic, edaphic, and vegetative.  Topographic features relate to desert 
tortoise ability to move around on the landscape, the potential for stable burrow construction, and 
to some extent exposure to predators (e.g., slightly rough landscapes may provide improved 
hiding cover for desert tortoises).  The edaphic predictor variable was included in case it was 
associated with occurrence via stable burrow construction.  The vegetative variables reflect 
biotic habitat influences, including being a general measure of food availability and shade/cover 
availability.  
 
Table 1.  Types and units of remote-sensed predictor variables assessed in the statistical model 
for desert tortoise occupancy on the Boulder City Conservation Easement, Clark County, 
Nevada, USA. 

Type of 
predictor 

Predictor 
variable 

Units; notes 

Topographic 

Distance to road Euclidean distance (100m) to nearest paved/unpaved road 

Roughness1 
Root mean square diff in raster cell elevation from neighbor 
(x10); lower values = smoother area. 

Slope1 Percent slope, in tenths of a percent; 100% = 45 degrees. 

Wetness1 Unipath wetness index (x10); low values = drier area. 

Washes1 Average density of washes (10 m / ha) w/in 25 m of cell. 

Edaphic Dominant soil1 Soil Great-Group type 

Vegetative 
Creosote cover1 Areal coverage of creosote (sq. decimeters / 25 m2) 

Bursage cover1 Areal coverage of bursage (sq. decimeters / 25 m2) 
1These variables calculated by University of Texas at Austin.  See Young et al. (2017) for details on variable 
calculation.  Most variables were transformed from Young et al. (2017) to facilitate model convergence and 
interpretation of the intercept. 

 
 All remote-sensed predictor variables were initially generated on a 5m x 5m raster grid 
(see Young et al. 2017 for detailed discussion of variable creation).  All variables were 
resampled as the average of all grid cells within the 4 ha occupancy sampling plots.  Several 
topographic and vegetative variables were also calculated at the 40 ha scale, but average values 
for each variable at this larger scale were highly correlated with the average values at the 4 ha 
scale (r > 0.9).  Only the 4 ha plot-level predictor variables were used in the analysis.  The 
available vegetative variables also included total vegetative areal coverage and volume estimates 
for creosote (Larrea tridentate), bursage (Ambrosia dumosa), and total vegetation.  Only areal 
coverage of creosote and bursage were used in the analysis because total vegetation area was 
highly correlated with bursage cover (r = 0.89), bursage and creosote cover were only weakly 
correlated with each other (r = -0.27), and volume measurements for all variables were a linear 
calculation based on the remote-sensed areal estimates (Young et al. 2017).  For creation of the 
predictive raster surface using results of the statistical model, the predictor variable rasters were 
reclassified using a neighborhood analysis in GIS, such that each grid cell represented the mean 



value for that predictor within a 4 ha square centered on the grid cell.  This way the calculation 
of the predictive surface was equivalent to that of the input data in the statistical model.  Some 
variables were adjusted (e.g., divide all values by 100) from Young et al. (2017) to improve 
statistical model convergence and to facilitate a natural interpretation of the intercept values in 
the model.  All variables were centered (i.e., mean subtracted from observed) to facilitate 
analysis.  Possible quadratic forms for all variables were investigated prior to specification of the 
final model.  The predictive surface based on the final model was created using the Raster 
Calculator tool.  All spatial analysis was done in ArcGIS 10.4.1. 
 
Statistical model 
 I built a Bayesian state-space hierarchical occupancy model (Panel 1; sensu Royle & 
Kerry 2007, Nichols et al. 2008, and Mordecai et al. 2011).  Each site i had an underlying true 
occupancy state (psi[i]) that was observed via a random permutation of apparent yearly 
occupancy (z[i,j] for site i and year j), conditional on true occupancy.  The within-year survey 
data fed into each site’s apparent yearly occupancy.  Statistical analyses were completed using 
‘r2jags’ and ‘coda’ in R 3.4.0. 
 
Model and predictive surface validation 
 It is important to ensure three things about a statistical model’s output, especially one as 
complex as this one.  First, we need to verify the internal integrity of the Bayesian model 
performance to determine if the output is reliable (conditional on the model structure and input).  
Second, we need to determine if the predictive surface is supported by our input data to ensure 
no statistical problems or raster GIS problems in the process from raw data to model output to 
predictive surface.  Third, when sufficient independent data exist, it is very useful to evaluate the 
accuracy of the predictive surface by comparing it to independent data. 
 Here, we had access to all three levels of validation.  First, model performance was 
assessed internally through inspection of Markov Chain Monte Carlo (MCMC) plots and R-hat 
diagnostics.  Second, alignment of the predictive surface with the input data was achieved via 
logistic regression whether an occupancy sampling plot ever had a live tortoise or active burrow 
detection against the mean predictive surface value within the plot.  Third, I used desert tortoise 
telemetry locations in the northern half of the BCCE and correlation analyses to determine if 
resident tortoises used the BCCE proportional to what is predicted in the occupancy predictive 
surface.  Together, these three validation methods provide a strong assessment of the accuracy 
and robustness of the model results and the predictive occupancy surface. 
 



Panel 1.  Bayesian state-space hierarchical model for desert tortoise occupancy in the Boulder 
City Conservation Easement, Clark County, Nevada, USA, 2013 – 2017.  This is the model 
specification in the JAGS language.  See Appendix A for full R code to replicate the analysis. 

 
 
Results 
 Occupancy surveys were conducted from early to late April in 2013 and 2014 and from 
early April to mid-June in 2015, 2016, and 2017.  All surveys were conducted at least one week 
apart at each plot.  The order of plots surveyed was randomized each survey.  In total there were 
1,710 plot surveys conducted that were used in this analysis. 
 There were a total of 96 live tortoise detections across all sites and years, with 10, 6, 22, 
22, and 36 observations in years 2013 through 2017, respectively.  There were a total of 63 

#Priors for hyperparameters      
b.distrd~dnorm(0,0.0001) 
b.distrd.quad~dnorm(0,0.0001) 
b.rough~dnorm(0,0.0001)       
b.rough.quad~dnorm(0,0.0001)      
b.slope~dnorm(0,0.0001)       
b.veg.t1~dnorm(0,0.0001)      
b.veg.t2~dnorm(0,0.0001)      
b.ptemp~dnorm(0,0.0001) 
 
pao <- sum(psi[]) #derived number of sites occupied           
      
#Estimates of year-specific probabilities of detection 
for(j in 1:nYears){ 
 p.vis.year[j] ~ dunif(0,1)  
 p.burr.year[j] ~ dunif(0,1)  
 z.year[j] <- sum(z[,j])  
 yr.apparent[j] ~ dunif(0,1) } #end nYears loop      
   
 #yearly apparent occupancy observation equation 
 for(i in 1:nSite){ 
   #State model 
   psi0[i]~dnorm(0,0.0001) 
   psi.logit[i] <- psi0[i] + b.distrd*distroad[i]+b.distrd.quad*distroad[i]*d 
             istroad[i] + b.rough*rough[i] + b.rough.quad*rough[i]*rough[i] +  
             b.slope*slope[i] + b.veg.t1*veg.t1[i] + b.veg.t2*veg.t2[i] 
   psi[i] <- exp(psi.logit[i])/(1+exp(psi.logit[i]))    
 
   # Observation model 
    for(j in 1:nYears){ 
       z[i,j] ~ dbern(psi[i]*yr.apparent[j])   
       
       for(k in 1:nSurveys){       
         yvis[i,k,j] ~ dbern(detprob.vis[i,k,j]*z[i,j])  
         yburr[i,k,j] ~ dbern(p.burr.year[j]*z[i,j])  
         detprob.vis.logit[i,k,j] <- p.vis.year[j] + b.ptemp*ptemp[i,k,j] 
  detprob.vis[i,k,j] <- exp(detprob.vis.logit[i,k,j])/(1+exp(detprob.v 
                          is.logit[i,k,j]))  
 ptemp[i,k,j]~dnorm(0,0.0001) 



active burrow detections, with 12, 5, 8, 9, and 29 in years 2013 through 2017, respectively.  
Mean distance to road across the plots was 1,020.1 m (SD 878.0), mean roughness index was 
0.73 (SD 0.36), mean slope was 2.74% (SD 1.1), mean areal coverage of creosote was 0.56 m2 
per 25m2 (SD 0.31), mean coverage of bursage was 2.47 m2 per 25m2 (SD 0.66), mean wetness 
index was -5.37 (SD 0.79), and mean wash density was 0.011 m/ha (SD 0.008).  There were four 
dominant soil types: Haplargids, Haplocalcids, Torriorthents, and Torripsamments.  The 
proportion of sites that ever had a detection of a live tortoise or active burrow was higher for 
sites in Haplocalcid soils (56.0% had detections) and Torriorthent soils (54.3%) than at sites in 
Haplargid soils (21.4%) and Torripsamment soils (0.00%; only a single site in this soil type). 
 Conditional density plots were examined for all variables to determine if any variables 
might exhibit a quadratic relationship with occupancy.  This identified that the variables distance 
to road, roughness, slope, and wash density potentially had quadratic relationships and quadratic 
terms were included in the saturated model.  A saturated model (i.e., all possible predictor 
variables, including quadratic terms where possible) was then built to identify meaningful 
variables for the final model.  After inspection of the posterior densities, the variables quadratic 
slope, wetness, and wash density were removed from further consideration because the posterior 
densities for the associated coefficients broadly overlapped zero.  Dominant soil type was 
initially included, but in the final model it resulted in extreme logit values that distorted the 
coefficient estimates of the other variables.  Dominant soil was removed from the final model to 
obtain reasonable parameter estimates of the other variables.  The final statistical model for 
occupancy was: 
 
ሺψሻݐ݈݅݃ ൌ 	ψ0  ௗ௦௧ௗߚ ∗ ݀ݎݐݏ݅ܦ 	ߚௗ௦௧ௗଶ ∗ ݀ݎݐݏ݅ܦ

ଶ 	ߚ௨ ∗ ݄݃ݑܴ 	ߚ௨ଶ
∗ ݄݃ݑܴ

ଶ 	ߚ௦ ∗ ݈݁ܵ 	ߚ௩.௧ଵ ∗ ܸ݁݃. 1ݐ 	ߚ௩.௧ଶ ∗ ܸ݁݃.  2ݐ
  
where ψ is the true occupancy of site i, ψ0 is an intercept occupancy value in the absence of 
covariates, βx is the coefficient estimate for predictor variable x, veg.t1 is creosote cover, and 
veg.t2 is bursage cover.  Survey-level detection probability for active tortoises had a single 
predictor variable that adjusted the year-specific detection probability estimate: 
 

൫p൯ݐ݈݅݃ ൌ 	p. year  ௧ߚ ∗  ݉݁ܶ
 
where pj is the detection probability for live tortoises in year j conditional on an intercept for 
detection probability in year j (p.yearj) and the air temperature during the survey at site i in year j 
on survey k. 
 After removing the non-meaningful variables and withholding the dominant soil type 
variable the final model was run to obtain coefficient estimates and posterior density 
distributions for the statistical model.  The final model was run for 100,000 MCMC iterations on 
three separate chains.  The first 10,000 iterations were discarded for burn-in and the remaining 
iterations were thinned to every 30th draw to reduce autocorrelation in the posterior draws, 
resulting in 9,000 iterations saved for inference.   
 The final model found several important relationships between site occupancy and 
landscape variables.  A site was more likely to be occupied the further it was from a road (βroad = 



5.73, 95% Cr.I = -1.16, 12.52).  The positive linear term and a significant positive quadratic term 
(βroad2 = 0.96, 95% Cr.I = 0.18, 1.56) for distance to road meant that the probability of occupancy 
increased non-monotonically, such that the rate of increasing likelihood of occupancy increased 
with distance from a road.  Sites were more likely to be occupied at low levels of topographic 
roughness, and likelihood of non-occupancy increased rapidly as roughness increased (βrough = -
3.84, 95% Cr.I = -37.24, 28.98; βrough2 = -3.71, 95% Cr.I = -8.17, -0.21).  Although the variable 
‘slope’ was retained in the final model, the 95% Credible Interval of the coefficient estimate 
broadly overlapped zero and was therefore not significant or meaningful (βslope = 5.617, 95% Cr.I 
= -5.03, 16.91).  Creosote coverage was non-significantly negatively related to occupancy, 
meaning that occupancy of sites tended to decline as creosote coverage on the plot increased 
(βveg.t1 = -0.92, 95% Cr.I = -3.00, 1.02).  Bursage coverage was significantly related to 
occupancy, with increasing coverage of bursage associated with increasing rates of site 
occupancy (βveg.t2 = 0.89, 95% Cr.I = 0.15, 1.66).  The bursage coverage coefficient can be 
exponentiated, giving an odds ratio on occupancy as a function of unit changes in bursage cover.  
A site was 2.44 (95% Cr.I = 1.15, 5.23) times more likely to be occupied with every 1 
decimeter2/25m2 increase in bursage cover.  
 Parameters for probability of detection showed considerable variation among years. The 
probability of detecting a live tortoise in a single survey, given the site was truly occupied, 
ranged from 0.185 in 2015 to 0.734 in 2013.  The probability of detecting an active burrow, 
given occupancy, ranged from 0.530 in 2015 to 0.549 in 2013 (Figure 3a).  In addition to the 
year-specific visual detection probability, the probability of detecting a live tortoise decreased as 
air temperature increased (βtemp = -0.074, 95% Cr.I. = -0.087, -0.060).  Exponentiating the 
temperature coefficient indicates that for every 1.0 °C increase in air temperature, the probability 
of detecting a live tortoise at an occupied site decreases 7.1%.  With a 10°C increase in air 
temperature there is a 52.3% decrease in the odds of detecting a live tortoise (Figure 3b). 
 The underlying state variable of interest, true occupancy status, was predicted for each 
site based on the survey results from all five years and the influence of the landscape predictors 
on the inherent likelihood of that site’s occupancy by desert tortoise (Appendix C).  As expected, 
sites that ever had a live tortoise or active burrow detected on them in any survey were predicted 
to be occupied (i.e., the frequency of desert tortoise encounters over the survey period ≈ 1.0).  
All of the sites that never had a tortoise or burrow detection had variable probabilities of true 
occupancy (i.e., predicted frequencies of tortoise encounters).  The probabilities for these sites 
ranged from 0.00 to 0.99, with the majority being below 0.10.  The variation in these values is 
due to the influence of the landscape predictors, which for a handful of sites strongly indicated 
that they likely have high expected frequency of occurrence, but by chance both tortoises and 
active burrows happened to go undetected in all five years.  Most remaining sites were predicted 
to have low (≈0.20) or very low (≈0.01) frequencies of encounters with desert tortoise. 
 
 
 
 



Figure 3.  Year-specific and temperature-influenced detection probabilities for live desert 
tortoises and active burrows at occupied sites in the Boulder City Conservation Easement, Clark 
County, Nevada, USA, 2013 – 2017.  Error bars are 95% credible intervals. 

 
 
 
 In addition to the true underlying occupancy state, the model included a term for 
“apparent annual occupancy”, which directly estimated the process by which some sites that 
were truly occupied did not have any detections in some years.  The proportion of truly occupied 
sites that appeared occupied in any given year was 0.19, 0.20, 0.66, 0.49, and 0.63 consecutively 
in years 2013 through 2017.  This highlights that many of the sites that were truly occupied had 
years where that occupancy went undetected, although this proportion decreased dramatically in 



2015 when survey effort increased dramatically (i.e., the yearly apparent occupancy increased 
dramatically when the number of surveys per year increased from three to seven).  The related 
metric in the model, zj, which sums the apparent probability of occupancy across all sites in each 
year, can be used to directly test the assumption of constant occupancy across years.  Here, the 
summed probability of occupancy was 7.29, 7.95, 28.61, 21.00, and 27.23 consecutively in years 
2013 through 2017.  Again, this directly shows that survey effort affects the proportion of sites 
that appear occupied.  A linear regression on yearly apparent occupancy, after accounting for the 
different survey effort in 2013-2014 versus 2015-2017, found that there was no trend in yearly 
apparent occupancy (p = 0.885).  Combined with knowledge on desert tortoise ecology and life 
history, this supports the validity of the assumption of constant true occupancy within this time 
frame. 
 The predictor variable coefficients were inserted into the statistical model above and then 
applied to the input raster layers for each predictor variable, creating a continuous predictive 
surface of relative frequency of occurrence of desert tortoise across the BCCE (Figure 4).  The 
predictive surface was originally a distribution of index values on the logit scale, which were 
reclassified into equal-area bins, ranging from ‘1’ (the lowest predicted frequency of 
occurrence), to ‘5’ (the highest predicted frequency of occurrence).  In other words, an equal 
proportion of the BCCE occurs in each predicted frequency bin, and the bins occur in rank order.  
Note that the map does not represent predicted presence and absence of desert tortoise, only 
relative frequency of occurrence. 
 
Validation 
 The statistical model and predictive raster surface were validated in three ways: internal 
MCMC sampler diagnostics, how well the raster surface predicted the input desert tortoise 
survey data, and how well the raster surface predicted the space use of independent radio-
telemetered desert tortoises. 
 First, the MCMC sampler diagnostics showed solid and reliable performance of the 
MCMC sampler and resultant inference on specific parameters.  All three chains converged on 
the same distributions for parameters, including deviance, and showed a high degree of mixing.  
For most monitored parameters, including deviance, there was low autocorrelation in the sample 
draws.  R-hat indices, a measure of the mixing ratios of each parameter’s posterior distribution 
across the three chains, were below 1.05 for all but three of the 103 monitored parameters, often 
below 1.002.  This indicates reliable inference can be made on the posterior distributions of the 
parameters of interest (conditional on model structure and input data). 

Second, the detection history at sample sites was well predicted by the underlying 
predictive raster surface.  Logistic regression found that as the mean predicted frequency of 
occurrence within the site increased, the site was more likely to have ever had a detection of a 
live tortoise or active burrow (βmean =  0.518, 95% C.I. = 0.127, 0.909; p = 0.009).  This indicates 
a statistically-significant relationship whereby the predictive surface was related positively to the 
frequency of desert tortoise occurrences. 
 
 
 



Figure 4.  Predicted relative frequency of occurrence of desert tortoise across the Boulder City 
Conservation Easement, Clark County, Nevada, USA, 2013-2017.  Predicted frequency of 
occurrence was reclassified into five equal-area bins ranging from ‘1’ (lowest frequency) to ‘5’ 
(highest frequency). 

 
 
 Third, GPS locations from independent radio-telemetered desert tortoises were plotted on 
top of the predictive raster surface.  These locations were only in the northern portion of the 
BCCE.  The predicted frequency bin for the grid cell under the location was sampled, and the 
frequency of locations occurring in each bin was compared to the expected occurrence at random 
given the spatial composition of all predictive frequency bins across the north BCCE (i.e., if the 
predictive surface was unrelated to how desert tortoise use the landscape, the frequency of GPS 
locations would be random with respect to the bins of the predictive surface).  The correlation 
analysis found that there was a significant linear relationship, whereby desert tortoises occurred 



in the predicted low frequency portions of the BCCE less often than expected and occurred in the 
high predicted frequency portions more often than expected (Pearson’s r = 0.948, p = 0.014).  
This analysis demonstrated that the predictive raster surface performed very well at predicting 
the spatial variation in occurrence of independent desert tortoises in the BCCE.  Note that the 
lower frequency bins do not indicate “non-habitat”, as 117 of the GPS locations did occur in 
predicted frequency bin ‘1’.  Rather, this highlights the strong performance of the raster surface 
as a predictor of relative frequency of occurrence. 
 
Figure 5.  Number of independent desert tortoise GPS locations in each predicted frequency of 
occurrence bin in the Boulder City Conservation Easement, Clark County, Nevada, USA.  
Number is compared to the number expected if GPS locations were random with respect to the 
predicted frequency raster surface (i.e., 150 fewer GPS locations occurred in the lowest predicted 
frequency bin than expected at random).  This analysis shows that independent tortoises used the 
lowest predicted frequency far less than expected and the highest predicted frequency areas far 
more than expected, indicating that the predictive raster surface did well at predicting the habitat 
use and occurrence of independent desert tortoises. 

 
 
 
Conclusion 
 The novel Bayesian state-space hierarchical occupancy model performed well and 
achieved the goals of the project. It leveraged the full sampling dataset and provided a single 
estimate of the relationships between landscape variables and the frequency of encounters of 
desert tortoise in the BCCE.  Desert tortoise were more likely to occur in areas far from roads, 
with low topographic roughness, with low areal coverage of creosote, and with high areal 
coverage of bursage.  The probability of detecting a live desert tortoise or active burrow during a 
single survey, if the site was truly occupied, was highly variable among years.  Detectability of 
live tortoises was also strongly dependent on air temperature at the time of the survey, with 



detectability decreasing as air temperature increased.  The statistical model validated well 
internally, and did very well at predicting the survey history of sample sites and the habitat use of 
independent desert tortoises. 
 The calculation of yearly apparent occupancy is the crux of evaluating the assumption of 
constant occupancy within the time period analyzed.  Standard occupancy models assume 
constancy within years and dynamic models explicitly model change in true occupancy among 
years.  The state-space model presented here rests on the assumption of constant occupancy 
across the years analyzed (or, if modified, could allow for explicit testing of trends in 
occupancy).  A post-hoc analysis of the proportion of the sites that appeared occupied in each 
year did not support rejection of this assumption, as there was no trend in apparent occupancy 
after adjusting for survey effort.  A clear caveat to this assumption is that at some length of time 
the assumption is no longer tenable.  Even a long-lived low-recruitment species like desert 
tortoise will eventually show changes in the proportion of area that is occupied, particularly in 
the face of dramatic population declines. 
 The failure to reject the assumption of constant occupancy here has clear implications for 
using occupancy monitoring as a tool to monitor desert tortoise populations.  First, making this 
assumption was only necessary in order to model single relationships between landscape 
predictor variables and true occupancy in the presence of high annual variability in detectability 
of desert tortoise.  It is not inherent that this assumption be made for an occupancy monitoring 
program, and indeed, this state-space model could be modified to directly test for temporal trends 
in occupancy subject to high annual variability in detectability.  Second, it is reasonable to make 
the assumption of constant occupancy, over (relatively) short time periods, given desert tortoise 
ecology and life history.  The proportion of desert tortoise habitat that is occupied cannot 
increase dramatically in a short period of time, but can decrease rapidly.  We did not see 
evidence of a rapid decline in this data set, probably at least partially due to the protected 
conservation status of the BCCE.  Occupancy monitoring has been demonstrated to be more 
efficient and powerful that line-distance sampling (Zylstra et al. 2010).  Therefore the most 
logical step for monitoring is to leverage occupancy sampling as a monitoring tool, but to modify 
a unified state-space model such as presented here to explicitly test for temporal trends in true 
occupancy while explicitly accounting for the strong inter-annual variation detectability and 
apparent occupancy.  Including climatic predictor variables on the apparent occupancy level of 
this model would be a promising way to adjust for apparent occupancy to better estimate true 
underlying occupancy in each year.  The model presented here is a useful and promising tool for 
monitoring desert tortoise occupancy trends over time given high annual variability in apparent 
occupancy. 
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Appendix A: JAGS model code for the dual-method multiple-season occupancy model to estimate 
environmental relationships underlying occupancy in the presence of high annual variability in apparent 
occupancy. 
# Statistical code for building and running a dual‐method multiple‐season occupancy model in JAGS using R as an 
# interface.  Code is written to be replicated via copy‐paste after changing the input file path to reflect where  
# the input .csv is stored on the user’s computer.  Annotation comments follow a hashtag (#) and are ignored by 
# R. 
 
library(R2jags) 
library(coda) 
 
dt.full.data <- read.csv("C:/Users/Heron Ecological/Documents/HeronEcological/Clark
County_NV/ScienceAdvisorPanel/OccupancyAnalysis/Data/occu_jags_fullcovar_centered_R
input.csv", header=TRUE, colClasses = c("factor", rep("numeric",71),"factor",rep("n
umeric",20))) 
#str(dt.full.data) #a check that data was imported and attributed correctly 
 
dt.surveytemp.data <- read.csv("C:/Users/Heron Ecological/Documents/HeronEcological
/ClarkCounty_NV/ScienceAdvisorPanel/OccupancyAnalysis/Data/survey_temps.csv", heade
r=TRUE, colClasses=c(rep("numeric",36)))   #read in the survey-level predictor 
 
 
dt.full.vis <- dt.full.data[,2:36] #isolate visual-detection response data 
dt.full.burr <- dt.full.data[,37:71] #isolate burrow-detection response data 
dt.covar.temp <- dt.surveytemp.data[,2:36] 
 
nSite <- 75 #Specify constants for model looping 
nSurveys <- 7 
nYears <- 5 
 
#create arrays of multi-dimensional data 
dt.visarray <- array(as.matrix(dt.full.vis), dim=c(nSite, nSurveys, nYears)) 
 #print(dt.array)  #internal check; yep, looks good 
dt.burrarray <- array(as.matrix(dt.full.burr), dim=c(nSite, nSurveys, nYears)) 
dt.temparray <- array(as.matrix(dt.covar.temp), dim=c(nSite, nSurveys, nYears)) 
 
#data transformation on already-centered variables to improve 
#model convergence and get sensible intercept estimates 
dt.full.data$dist.road.c2 <- dt.full.data$dist.road.c/100 
dt.full.data$rough.c2 <- dt.full.data$rough.c*10 
dt.full.data$slope.c2 <- dt.full.data$slope.c*10 
dt.full.data$veg.area.t1.c2 <- dt.full.data$veg.area.t1.c*100 
dt.full.data$veg.area.t2.c2 <- dt.full.data$veg.area.t2.c*100 
dt.full.data$wetness.c2 <- dt.full.data$wetness.c*10 
dt.full.data$wash25m.ha.c2 <- (dt.full.data$wash25m.ha.c)/10 
 
#list data to be included/accessed during the model run 
jags.final.rescaled.data <- list(yvis = dt.visarray, yburr = dt.burrarray, distroad
=dt.full.data$dist.road.c2, rough=dt.full.data$rough.c2, slope=dt.full.data$slope.c
2, veg.t1=dt.full.data$veg.area.t1.c2,veg.t2=dt.full.data$veg.area.t2.c2, ptemp=dt.
temparray, nSite = nSite, nYears = nYears, nSurveys = nSurveys) 
 
 
#JAGS needs starting values that are close to observed values, pull from data 
z.init <- apply(dt.full.data[,2:71],1,max,na.rm=TRUE) #ignore NA’s 
z.init <- cbind(z.init, z.init, z.init, z.init, z.init) #Year init values 



 
 
# Full JAGS model statement  
 
jags.final.model <- function(){ 
      
     #Priors for hyperparameters      
     b.distrd~dnorm(0,0.0001) 
     b.distrd.quad~dnorm(0,0.0001) 
     b.rough~dnorm(0,0.0001)       
     b.rough.quad~dnorm(0,0.0001)      
     b.slope~dnorm(0,0.0001)       
     b.veg.t1~dnorm(0,0.0001)      
     b.veg.t2~dnorm(0,0.0001)      
     b.ptemp~dnorm(0,0.0001) 
 
     #Derived quantities of interest 
     pao <- sum(psi[]) #derived number of sites occupied           
      
     #Estimates of year-specific probabilities of detection 
     for(j in 1:nYears){ 
         p.vis.year.logit[j] ~ dnorm(0,0.0001)  
  p.burr.year[j] ~ dunif(0,1)  
  p.vis.year[j] <- exp(p.vis.year.logit[j])/(1+exp(p.vis.year.logit[j])) 
  #detprob.burr[j] <- exp(p.burr.year[j])/(1+exp(p.burr.year[j])) 
  z.year[j] <- sum(z[,j])  
   yr.apparent[j] ~ dunif(0,1)         
  } #end nYears loop      
   
     #yearly apparent occupancy observation equation 
     for(i in 1:nSite){ 
         #State model 
         psi0[i]~dnorm(0,0.0001) 
  psi.logit[i] <- psi0[i] + b.distrd*distroad[i]+b.distrd.quad*distroad[i]*di
stroad[i] + b.rough*rough[i] + b.rough.quad*rough[i]*rough[i] + b.slope*slope[i] + 
b.veg.t1*veg.t1[i] + b.veg.t2*veg.t2[i] 
  psi[i] <- exp(psi.logit[i])/(1+exp(psi.logit[i]))    
 
         # Observation model 
         for(j in 1:nYears){ 
             z[i,j] ~ dbern(psi[i]*yr.apparent[j])   
       
             for(k in 1:nSurveys){       
                yvis[i,k,j] ~ dbern(detprob.vis[i,k,j]*z[i,j])  
   yburr[i,k,j] ~ dbern(p.burr.year[j]*z[i,j])  
               detprob.vis.logit[i,k,j] <- p.vis.year.logit[j] + b.ptemp*ptemp[i,k
,j] 
   detprob.vis[i,k,j] <- exp(detprob.vis.logit[i,k,j])/(1+exp(detprob.
vis.logit[i,k,j]))  
   ptemp[i,k,j]~dnorm(0,0.0001) 
  } # end nSurveys loop 
         } #end nYears loop 
     } #end nSite loop 
 } #close model specification 
 
# Tell JAGS what model nodes to monitor and report in output 



jags.final.params <- c("yr.apparent","psi","z.year","pao","b.distrd" ,"b.distrd.qua
d","b.slope", "b.veg.t1","b.rough","b.rough.quad","b.veg.t2","b.ptemp","p.vis.year"
,"p.burr.year") 
 
 
# Give JAGS initial starting values for the gnarlier stochastic nodes 
jags.inits <- function(){list("p.vis.year.logit" = rnorm(5), "p.burr.year" = runif(
5), "z" = z.init)} 
 
# Execute JAGS model  
# 100k draws from posterior distribution, discard first 10k draws for burn-in 
# thin to every 30th draw to reduce serial autocorrelation in posterior draws 
# ran these parameters on three parallel chains to assess proper convergence 
 
dt.final.nosoil.jagsfit <- jags(data=jags.final.rescaled.data, parameters.to.save=j
ags.final.params, inits=jags.inits, n.iter=100000, n.burnin=10000, n.thin=30,model.
file=jags.final.model) 

 

#call the results 
dt.final.nosoil.jagsfit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix B.  Full model results from monitored nodes in the JAGS dual-method multi-year occupancy 
model outlined in Appendix A.  ‘pao’ is the estimated proportion of samples sites that are occupied, and 
‘psi[i]’ is the predicted probability of true occupancy for site [i].  ‘Deviance’ is the distance of the  
current model from a fully-saturated model (i.e., it is unit-less and intended for comparison among  
models). ‘Mu.vect’ is the average value from the conditional posterior density surface and can be  
interpreted as the ‘best estimate’.  The 2.5% through 97.5% quantiles are the parameter values associate
d with the stated quantile value of the posterior density surface.  The 2.5 and 97.5% are similar to the  
bounds of a 95% confidence interval, except in this Bayesian model they represent true probability  
bounds (e.g., there is a 95% probability that the true detection probability for active burrows in 2013  
[p.burr.year[1]], given desert tortoise presence, is between 0.332 and 0.745).  Rhat is a measure of  
parameter convergence and should be < 1.10.  N.eff is the effective number of samples contributing to  
the posterior density.  Note that because this is a stochastic Bayesian model, if the code in Appendix A  
is run it will yield slightly different estimates than presented here. 
 
                 mu.vect sd.vect      2.5%       25%       50%       75%     97.5%  Rhat n.eff 

b.distrd           5.730   3.520    -1.155     3.379     5.734     8.090    12.523 1.001  9000 

b.distrd.quad      0.957   0.349     0.178     0.745     0.992     1.201     1.560 1.001  7400 

b.ptemp           -0.074   0.007    -0.087    -0.078    -0.074    -0.069    -0.060 1.001  9000 

b.rough           -3.838  16.902   -37.242   -15.362    -3.706     7.465    28.980 1.004   560 

b.rough.quad      -3.709   2.093    -8.167    -5.070    -3.539    -2.178    -0.205 1.002  1800 

b.slope            5.617   5.616    -5.034     1.724     5.505     9.423    16.907 1.007   360 

b.veg.t1          -0.920   1.044    -2.998    -1.620    -0.883    -0.196     1.024 1.003  1000 

b.veg.t2           0.892   0.382     0.146     0.630     0.883     1.145     1.655 1.001  4800 

p.burr.year[1]     0.549   0.107     0.332     0.477     0.552     0.625     0.745 1.001  9000 

p.burr.year[2]     0.241   0.095     0.083     0.171     0.232     0.299     0.450 1.001  9000 

p.burr.year[3]     0.053   0.018     0.024     0.040     0.051     0.064     0.096 1.001  9000 

p.burr.year[4]     0.080   0.026     0.038     0.061     0.078     0.096     0.139 1.001  5100 

p.burr.year[5]     0.184   0.031     0.126     0.162     0.182     0.204     0.249 1.001  9000 

p.vis.year[1]      0.734   0.216     0.194     0.611     0.788     0.907     0.992 1.001  9000 

p.vis.year[2]      0.556   0.274     0.041     0.342     0.574     0.790     0.979 1.001  9000 

p.vis.year[3]      0.185   0.156     0.006     0.065     0.141     0.268     0.579 1.001  9000 

p.vis.year[4]      0.385   0.235     0.024     0.196     0.362     0.550     0.887 1.001  4500 

p.vis.year[5]      0.692   0.210     0.222     0.553     0.724     0.864     0.985 1.001  9000 

pao               43.116   2.168    39.171    41.696    42.996    44.375    47.890 1.001  9000 

psi[1]             0.016   0.122     0.000     0.000     0.000     0.000     0.005 1.002  1200 

psi[2]             0.029   0.163     0.000     0.000     0.000     0.000     0.975 1.001  9000 

psi[3]             0.256   0.433     0.000     0.000     0.000     0.872     1.000 1.001  8400 

psi[4]             0.998   0.020     0.993     1.000     1.000     1.000     1.000 1.036  4500 

psi[5]             0.996   0.047     1.000     1.000     1.000     1.000     1.000 1.001  9000 

psi[6]             0.002   0.044     0.000     0.000     0.000     0.000     0.000 1.006   420 

psi[7]             0.989   0.077     0.888     1.000     1.000     1.000     1.000 1.010  9000 

psi[8]             0.098   0.294     0.000     0.000     0.000     0.000     1.000 1.002  1900 

psi[9]             0.047   0.206     0.000     0.000     0.000     0.000     1.000 1.001  9000 

psi[10]            0.086   0.278     0.000     0.000     0.000     0.000     1.000 1.002  2800 

psi[11]            0.014   0.111     0.000     0.000     0.000     0.000     0.002 1.001  9000 

psi[12]            0.997   0.029     0.982     1.000     1.000     1.000     1.000 1.025  9000 

psi[13]            0.014   0.111     0.000     0.000     0.000     0.000     0.001 1.001  9000 

psi[14]            0.010   0.094     0.000     0.000     0.000     0.000     0.000 1.001  7100 

psi[15]            0.975   0.124     0.524     1.000     1.000     1.000     1.000 1.003  9000 

psi[16]            0.025   0.151     0.000     0.000     0.000     0.000     0.320 1.001  4500 

psi[17]            0.991   0.072     0.994     1.000     1.000     1.000     1.000 1.019  9000 

psi[18]            0.049   0.211     0.000     0.000     0.000     0.000     1.000 1.001  9000 

psi[19]            0.094   0.286     0.000     0.000     0.000     0.000     1.000 1.001  9000 

psi[20]            0.967   0.140     0.412     1.000     1.000     1.000     1.000 1.001  9000 



psi[21]            0.017   0.127     0.000     0.000     0.000     0.000     0.007 1.001  4500 

psi[22]            0.977   0.120     0.576     1.000     1.000     1.000     1.000 1.001  9000 

psi[23]            0.101   0.295     0.000     0.000     0.000     0.000     1.000 1.001  5200 

psi[24]            0.228   0.414     0.000     0.000     0.000     0.026     1.000 1.001  9000 

psi[25]            0.985   0.096     0.866     1.000     1.000     1.000     1.000 1.011  4800 

psi[26]            0.036   0.183     0.000     0.000     0.000     0.000     1.000 1.002  2700 

psi[27]            0.087   0.280     0.000     0.000     0.000     0.000     1.000 1.001  9000 

psi[28]            0.031   0.170     0.000     0.000     0.000     0.000     1.000 1.001  9000 

psi[29]            0.678   0.465     0.000     0.000     1.000     1.000     1.000 1.004  1600 

psi[30]            0.046   0.204     0.000     0.000     0.000     0.000     1.000 1.001  9000 

psi[31]            0.997   0.025     0.994     1.000     1.000     1.000     1.000 1.023  8400 

psi[32]            0.971   0.136     0.436     1.000     1.000     1.000     1.000 1.005  9000 

psi[33]            0.991   0.076     0.996     1.000     1.000     1.000     1.000 1.006  9000 

psi[34]            0.995   0.045     0.972     1.000     1.000     1.000     1.000 1.001  8100 

psi[35]            1.000   0.006     1.000     1.000     1.000     1.000     1.000 1.113  9000 

psi[36]            0.326   0.466     0.000     0.000     0.000     1.000     1.000 1.001  9000 

psi[37]            0.026   0.155     0.000     0.000     0.000     0.000     0.678 1.001  8800 

psi[38]            0.026   0.154     0.000     0.000     0.000     0.000     0.537 1.001  9000 

psi[39]            0.110   0.311     0.000     0.000     0.000     0.000     1.000 1.002  2100 

psi[40]            0.999   0.011     1.000     1.000     1.000     1.000     1.000 1.015  9000 

psi[41]            0.953   0.167     0.272     1.000     1.000     1.000     1.000 1.002  9000 

psi[42]            0.011   0.104     0.000     0.000     0.000     0.000     0.000 1.001  9000 

psi[43]            0.143   0.346     0.000     0.000     0.000     0.000     1.000 1.001  9000 

psi[44]            0.057   0.227     0.000     0.000     0.000     0.000     1.000 1.001  9000 

psi[45]            0.095   0.288     0.000     0.000     0.000     0.000     1.000 1.001  9000 

psi[46]            0.075   0.259     0.000     0.000     0.000     0.000     1.000 1.001  9000 

psi[47]            0.040   0.192     0.000     0.000     0.000     0.000     1.000 1.001  3300 

psi[48]            0.195   0.394     0.000     0.000     0.000     0.000     1.000 1.001  9000 

psi[49]            0.987   0.075     0.823     1.000     1.000     1.000     1.000 1.003  9000 

psi[50]            0.065   0.240     0.000     0.000     0.000     0.000     1.000 1.001  3100 

psi[51]            0.995   0.044     0.988     1.000     1.000     1.000     1.000 1.022  9000 

psi[52]            0.976   0.122     0.552     1.000     1.000     1.000     1.000 1.006  8100 

psi[53]            0.972   0.135     0.459     1.000     1.000     1.000     1.000 1.006  9000 

psi[54]            0.987   0.076     0.822     1.000     1.000     1.000     1.000 1.006  5200 

psi[55]            0.998   0.031     1.000     1.000     1.000     1.000     1.000 1.086  6600 

psi[56]            0.969   0.137     0.442     1.000     1.000     1.000     1.000 1.002  9000 

psi[57]            0.340   0.471     0.000     0.000     0.000     1.000     1.000 1.002  2100 

psi[58]            0.995   0.042     0.983     1.000     1.000     1.000     1.000 1.016  8100 

psi[59]            0.994   0.048     0.954     1.000     1.000     1.000     1.000 1.036  6100 

psi[60]            0.983   0.102     0.774     1.000     1.000     1.000     1.000 1.029  5100 

psi[61]            0.973   0.129     0.481     1.000     1.000     1.000     1.000 1.016  6800 

psi[62]            0.807   0.392     0.000     1.000     1.000     1.000     1.000 1.001  9000 

psi[63]            0.950   0.217     0.000     1.000     1.000     1.000     1.000 1.002  9000 

psi[64]            1.000   0.006     1.000     1.000     1.000     1.000     1.000 1.287  5100 

psi[65]            0.986   0.092     0.894     1.000     1.000     1.000     1.000 1.003  9000 

psi[66]            1.000   0.014     1.000     1.000     1.000     1.000     1.000 1.198  3100 

psi[67]            1.000   0.004     1.000     1.000     1.000     1.000     1.000 1.077  9000 

psi[68]            0.941   0.235     0.000     1.000     1.000     1.000     1.000 1.002  4100 

psi[69]            1.000   0.001     1.000     1.000     1.000     1.000     1.000 1.248  4300 

psi[70]            1.000   0.009     1.000     1.000     1.000     1.000     1.000 1.215  3100 

psi[71]            0.985   0.121     1.000     1.000     1.000     1.000     1.000 1.014  5100 

psi[72]            0.999   0.016     1.000     1.000     1.000     1.000     1.000 1.009  9000 

psi[73]            0.383   0.483     0.000     0.000     0.000     1.000     1.000 1.001  9000 

psi[74]            1.000   0.008     1.000     1.000     1.000     1.000     1.000 1.183  3200 

psi[75]            0.994   0.063     1.000     1.000     1.000     1.000     1.000 1.050  7200 

yr.apparent[1]     0.185   0.060     0.083     0.142     0.179     0.222     0.314 1.001  9000 

yr.apparent[2]     0.199   0.074     0.082     0.145     0.190     0.243     0.366 1.001  6000 



yr.apparent[3]     0.657   0.111     0.447     0.580     0.654     0.730     0.881 1.001  9000 

yr.apparent[4]     0.488   0.099     0.306     0.419     0.485     0.554     0.690 1.001  9000 

yr.apparent[5]     0.626   0.086     0.455     0.567     0.626     0.686     0.790 1.001  9000 

z.year[1]          7.286   0.588     7.000     7.000     7.000     7.000     9.000 1.001  9000 

z.year[2]          7.951   1.995     6.000     7.000     7.000     9.000    13.000 1.001  9000 

z.year[3]         28.610   3.931    22.000    26.000    28.000    31.000    38.000 1.001  9000 

z.year[4]         21.002   2.945    16.000    19.000    21.000    23.000    28.000 1.001  9000 

z.year[5]         27.232   2.115    24.000    26.000    27.000    29.000    32.000 1.001  9000 

deviance       19788.390  16.794 19759.214 19776.269 19787.240 19799.355 19824.311 1.001  9000 

 
For each parameter, n.eff is a crude measure of effective sample size, 
and Rhat is the potential scale reduction factor (at convergence, Rhat=1). 
 
DIC info (using the rule, pD = var(deviance)/2) 
pD = 141.0 and DIC = 19929.4 
DIC is an estimate of expected predictive error (lower deviance is better). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Appendix C.  Site-specific probability of true occupancy/frequency of occurrence (probability occupied 
and 95% credible intervals taken from Appendix B). 

Plot ID 
Ever 

observed 
Probability 
Occupied 

  
Lower 
95% Cr.I 

Upper 
95% Cr.I. 

1  0  0.02  0.00  0.01 

2  0  0.03  0.00  0.98 

5  0  0.26  0.00  1.00 

6  1  1.00  0.99  1.00 

8  1  1.00  1.00  1.00 

9  0  0.00  0.00  0.00 

10  1  0.99  0.89  1.00 

11  0  0.10  0.00  1.00 

12  0  0.05  0.00  1.00 

13  0  0.09  0.00  1.00 

15  0  0.01  0.00  0.00 

17  1  1.00  0.98  1.00 

18  0  0.01  0.00  0.00 

19  0  0.01  0.00  0.00 

20  1  0.98  0.52  1.00 

21  0  0.03  0.00  0.32 

22  1  0.99  0.99  1.00 

23  0  0.05  0.00  1.00 

24  0  0.09  0.00  1.00 

25  1  0.97  0.41  1.00 

26  0  0.02  0.00  0.01 

27  1  0.98  0.58  1.00 

28  0  0.10  0.00  1.00 

29  0  0.23  0.00  1.00 

30  1  0.99  0.87  1.00 

31  0  0.04  0.00  1.00 

32  0  0.09  0.00  1.00 

33  0  0.03  0.00  1.00 

34  0  0.68  0.00  1.00 

35  0  0.05  0.00  1.00 

36  1  1.00  0.99  1.00 

37  1  0.97  0.44  1.00 

38  1  0.99  1.00  1.00 

39  1  1.00  0.97  1.00 

40  1  1.00  1.00  1.00 

41  0  0.33  0.00  1.00 



Plot ID 
Ever 

observed 
Probability 
Occupied 

  
Lower 
95% Cr.I 

Upper 
95% Cr.I. 

42  0  0.03  0.00  0.68 

43  0  0.03  0.00  0.54 

44  0  0.11  0.00  1.00 

45  1  1.00  1.00  1.00 

46  1  0.95  0.27  1.00 

47  0  0.01  0.00  0.00 

48  0  0.14  0.00  1.00 

49  0  0.06  0.00  1.00 

50  0  0.10  0.00  1.00 

51  0  0.08  0.00  1.00 

52  0  0.04  0.00  1.00 

53  0  0.20  0.00  1.00 

54  1  0.99  0.82  1.00 

55  0  0.07  0.00  1.00 

56  1  1.00  0.99  1.00 

57  1  0.98  0.55  1.00 

58  1  0.97  0.46  1.00 

59  1  0.99  0.82  1.00 

60  1  1.00  1.00  1.00 

61  1  0.97  0.44  1.00 

62  0  0.34  0.00  1.00 

63  1  1.00  0.98  1.00 

64  1  0.99  0.95  1.00 

65  1  0.98  0.77  1.00 

66  1  0.97  0.48  1.00 

67  0  0.81  0.00  1.00 

68  0  0.95  0.00  1.00 

69  1  1.00  1.00  1.00 

70  1  0.99  0.89  1.00 

71  1  1.00  1.00  1.00 

72  1  1.00  1.00  1.00 

73  0  0.94  0.00  1.00 

74  1  1.00  1.00  1.00 

75  1  1.00  1.00  1.00 

76  0  0.99  1.00  1.00 

77  1  1.00  1.00  1.00 

78  0  0.38  0.00  1.00 

79  1  1.00  1.00  1.00 

80  1  0.99     1.00  1.00 

 


